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Abstract

Bank net interest margins (NIM) have been historically stable in the US on average,
but this stability deteriorated in the post-2020 period, particularly in the tails of the
distribution. Recent literature disagrees on the extent to which banks hedge interest
rate risk, and past literature shows that credit risk and persistence are also important
considerations for bank NIM. I use a novel approach to Bayesian dynamic panel quantile
regression to document heterogeneity in US bank NIM estimated sensitivities to interest
rates, credit risk, and own persistence. I find increased sensitivity to interest rates
in the tails of the conditional NIM distribution during the post-2020 period, driven
by increased interest rate sensitivities of bank loans and deposits. Density forecast
evaluation shows that the model forecasts outperform frequentist benchmark models,
and standard tail risk measures show that risks to bank NIM have material implications
for bottom-line measures of bank profitability.
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1 Introduction

Net interest margins (NIM) of US banks have been historically stable throughout economic

fluctuations, but this stability appears to have been broken in the post-pandemic period. In

the second quarter of 2021, the FDIC noted that average commercial bank NIM had reached

a record low as a result of declines in interest income outpacing declines in interest expenses.1

This has contributed to the increased attention to the interest rate risk of the US banking

sector for academics and bank regulators in the wake of the March 2023 US banking turmoil.

Historically, depressed bank NIMs have led to failures in the banking sector. For example,

during the US savings and loans (S&L) crisis in the 1980s, short-term interest rates rose

above long-term interest rates, resulting in interest expenses rising above interest incomes for

certain institutions, and ultimately a substantial amount of losses and bank failures in the

S&L banking sector. Recent history has also shown that individual outlier banks, such as

Silicon Valley Bank, can impose negative impacts on the banking sector without holding a

disproportionately large amount of total assets.

Recent academic work has focused on interest rate risk in two primary components of

banks’ balance sheets: (1) the impact on unrealized losses of bank fixed-income portfolios (for

example, Flannery and Sorescu (2023), Jiang et al. (2023)), and (2) the impact on interest-

rate-sensitive cash flows captured by the NIM of banks, representing profits that are the

difference between interest income and interest expense, scaled by a bank’s interest-earning

assets (for example, Abdymomunov, Gerlach, and Sakurai (2023)). This paper focuses on

the latter. There exist differing views in the literature on the ability of banks to hedge

macroeconomic interest rate impacts on bank NIMs (for example, Drechsler, Savov, and

Schnabl (2021), Williams (2020), Begenau and Stafford (2022), Abdymomunov, Gerlach, and

Sakurai (2023)). Additionally, past work has documented the importance of persistence and

macroeconomic credit risk in explaining bank net interest margins, which the above studies

do not explicitly address in their empirical frameworks. I ask the following questions: Is there

heterogeneity in sensitivity to interest rates, credit risk, and persistence across the conditional

NIM distribution, and does estimation of this sensitivity improve predicted outcomes? It is
1See https://www.fdic.gov/analysis/quarterly-banking-profile/qbp/2021jun/qbp.pdf.
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useful for regulators and bank supervisors to better understand and predict the conditional

distribution of bank NIMs, particularly when concerned about tail risks.

I contribute to this literature by documenting heterogeneity in sensitivities to macroe-

conomic interest rates, credit risk factors, and persistence of bank-level NIMs in a quantile

regression framework, and evaluating the resulting density forecasts against benchmark

models using proper scoring rules of the density predictions. Covas, Rump, and Zakrajšek

(2014) find that a dynamic panel quantile regression framework generally outperforms more

commonly used linear models when forecasting components of bank capital conditional on

macroeconomic outcomes, including NIM, given the models’ ability to capture nonlinearities.

Similar to Covas, Rump, and Zakrajšek (2014), I estimate a dynamic panel quantile regression

framework. However, I focus exclusively on bank NIMs and their underlying interest income

and expense components, I include a much larger sample of banks estimated over a relatively

longer time span, and I use a novel Bayesian approach to panel quantile regression as proposed

by Aghamohammadi and Mohammadi (2017). Shrinkage in the Bayesian setting can lead to

improved estimation and forecasting outcomes. The adaptive LASSO shrinkage used in this

framework addresses the incidental parameters problem in fixed-effect nonlinear estimation

and the potential bias associated with using a single LASSO shrinkage parameter, while

allowing for quantile-varying individual effects and having the added benefit of enjoying the

desirable “oracle” properties, behaving as if the true underlying model were known (Zou

(2006)). These points of departure allow for a more flexible approach relative to the framework

used by Covas, Rump, and Zakrajšek (2014), who use a single LASSO shrinkage parameter

and a quantile-invariant individual effect for a small sample of large banks, and for more

accurate out-of-sample model forecasts during the 2020-2022 period.

I estimate the model on quarterly regulatory filing data from a sample of 313 US bank

holding companies (BHC) during 1998-2022. I document heterogeneity in the conditional

quantile estimates of interest rate, credit risk and persistence variables commonly used in

the literature to model NIM across the conditional distribution. I find that a 100 basis

point increase in the 3-month Treasury bill (Treasury spread) is associated with 5, 3, and 8

(7, 5, and 9) basis point increases in NIM at the 5th, 50th and 95th conditional quantiles,

respectively. A 100 basis point increase in the credit risk spread is associated with a 4
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basis point decrease in NIM at the 5th conditional quantile and a 4 basis point increase in

NIM at the 95th conditional quantile. Time period subsample analysis finds that banks’

NIM sensitivity to interest rates has increased since 2020 and this increase is greater in

the conditional tails of the distribution, driven by higher interest rate sensitivities for loan

interest income and demand deposit interest expense, and is relatively more pronounced for

the largest banks. Importantly, these increased tail sensitivities are economically meaningful

for banks when interest rate or credit risk movements are large.

I use the conditional quantile estimates to produce full density forecasts for each bank

in the sample. In a forecasting exercise, I examine whether conditional density estimates

from my primary model specification outperform those from fixed-effect OLS, pooled quantile

regression, and the fixed-effect quantile autoregressive model framework of Covas, Rump, and

Zakrajšek (2014). I find that the Bayesian panel quantile regression framework statistically

outperforms several competing benchmark models in forecasting pseudo out-of-sample one-

period ahead outcomes over the post-pandemic period. These results are suggestive of

heterogeneity in parameter estimates and Bayesian shrinkage in the individual effects leading

to improvement in the prediction of bank NIMs. I also find that a model specification

that includes macroeconomic interest rate and credit risk factors outperforms a model that

excludes these macroeconomic covariates during the out-of-sample period, suggesting that

distributional sensitivity to interest rates, which were relatively volatile in the post-2020

period, matter for bank NIMs. Additional checks show that the model results are robust to

informative prior selection and forecasts that allow for additional variation across the size

distribution of banks.

Of use to regulators and bank examiners, the individual bank conditional density forecasts

of NIMs allow for evaluations of probabilistic risks. Examining the individual banks’ density

forecasts, outlier banks with relatively larger probability mass at near-zero levels of NIM

are observed in the 2020-2021 period, while bank densities had largely improved by the end

of 2022. In an aggregate setting, the Bayesian framework that I use appears to capture

relatively larger upper and lower tail risks across aggregated density forecasts of bank NIMs

relative to competing model frameworks, while still placing the highest probability closest to

the aggregated actual outcomes. I compute the expected shortfall across the individual bank

4



NIM density forecasts and show that the size of the upside and downside risks are material

across the distribution relative to bottom-line bank profitability, return on assets (ROA),

where the shortfall is sizable enough to move a portion of the conditional distribution to

negative ROA levels.

The remainder of the paper proceeds as follows. Section 2 reviews the relevant literature.

Section 3 provides background information on recent developments of bank NIM, and

documented determinants of NIM in the theoretical and empirical literature. Section 4

describes the empirical framework used in the analysis. Section 5 describes the data used for

the analysis. Section 6 provides the empirical results. Section 7 examines forecasting results

of the model. Section 8 provides robustness checks of the results. Section 9 looks at tail risk

implications of the density forecasts, and section 10 concludes.

2 Literature

Three primary strands of the literature are related to this paper. The first is bank net

interest margin sensitivities to macroeconomic interest rates, credit risk, and own persistence.

Theoretical and empirical work has found a positive relationship between bank NIM and

interest rate factors (for example, Alessandri and Nelson (2015); Borio, Gambacorta, and

Hofmann (2017); Covas, Rump, and Zakrajšek (2014); English, Van Den Heuvel, and Zakrajšek

(2018); Hirtle et al. (2016)). The empirical literature that examines interest rate impacts on

NIM typically relies on the impact of factors that summarize the yield curve, namely, factors

that capture the level and slope. The level is typically measured by short-term risk-free

interest rates and the slope is measured by a spread between relatively long- and short-term

risk-free rates (for example, Borio, Gambacorta, and Hofmann (2017); Alessandri and Nelson

(2015); Hirtle et al. (2016); Abdymomunov, Gerlach, and Sakurai (2023)). The level of the

yield curve captures expenses associated with the deposit franchise, which banks can profit

from by pricing deposits below market rates. If banks can adjust liability expense rates more

slowly than interest rates, and loans originate under the new interest rate environment, then

an increase in interest rates should result in a larger increase in interest income relative

to interest expense, thus increasing bank NIMs (Borio, Gambacorta, and Hofmann (2017);
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Alessandri and Nelson (2015)). Alessandri and Nelson (2015) further note that banks’ ability

to adjust liability expenses may be constrained by the zero lower bound, suggesting a an

important limitation of this tool in low interest rate environments. The slope of the yield

curve captures the returns to maturity transformation, so that an increase in the slope of the

yield curve is expected to increase bank net interest margins (Alessandri and Nelson (2015);

Borio, Gambacorta, and Hofmann (2017), English, Van Den Heuvel, and Zakrajšek (2018),

Samuelson (1945)).

Theoretical and empirical work shows that an additional concern is the impact of credit

spreads, so that factors capturing macroeconomic and firm-level credit risk are also relevant

for bank interest pricing decisions. Credit risk matters for bank NIMs because increased

macroeconomic credit risk should create incentives for banks to increase loan risk pricing to

offset potential losses (Angbazo (1997)). Other literature notes that, while this may be true

in the long run, the short run implications of increased credit risk may include banks shifting

their lending toward less risky and lower-yielding assets; thus, interest income generated from

lending decreases (Hanweck and Ryu (2005), Zarruk and Madura (1992)).

The academic literature has also documented the importance of own persistence of bank

net interest margins (English (2002), Flannery (1981)). This is partly a result of bank assets

and liabilities that span multiple maturity horizons, which presents difficulty in immediately

repricing the balance sheet at prevailing market rates. From a forecasting perspective, Covas,

Rump, and Zakrajšek (2014) note the importance of the autoregressive terms included in

their empirical model for bank profits in capturing changes in the conditional distribution

during extended periods of income losses. This inclusion of persistence is also used in

practical application, as models of bank revenues used by the Federal Reserve for its stress-

testing purposes are specified using four lags of the dependent variable as of the most recent

publication of methodology.2

The second relevant strand of the literature is related to the ability of banks to successfully

hedge interest rate risk, and the extent to which interest rate risk is heterogeneous across

banks. Flannery (1981) finds that large banks hedge interest rate risk by matching average
2See https://www.federalreserve.gov/publications/files/2024-march-supervisory-stress-test-methodology.

pdf.
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maturities in their asset and liability portfolios. English (2002) concludes that bank selection

of assets, liabilities, deposit rates, and hedging activities explains in part the stability of

observable NIMs as part of an international study. Drechsler, Savov, and Schnabl (2021)

examine banks’ ability to hedge interest rate risk arising from maturity transformation as a

result of market power over the deposit franchise, such that asset and liability sensitivities

to interest rates are matched and NIMs are stable across various interest rate environments.

Williams (2020) comes to conclusions similar to those of as Drechsler, Savov, and Schnabl

(2021) for the average bank but emphasizes that there is heterogeneity in the ability of banks

to hedge. Begenau and Stafford (2022) find that matching interest income and expense

sensitivities to interest rates are a consequence, but not the causal mechanism, that leads to

stable net interest margins. Abdymomunov, Gerlach, and Sakurai (2023) conclude that banks,

on average and in aggregate, had increased exposure to interest rate risk in the 2020-2021

pandemic period, and that this exposure was greater for small banks relative to large banks.

There is additional recent evidence that banks’ net interest margin sensitivity to interest rates

is heterogeneous across bank size, balance sheet composition, and time periods (Sengupta

and Xue (2022); Laliberte and Sengupta (2024)). In this paper, I rely on quantile regression

as a natural framework for dealing with the observed and unobserved bank heterogeneity

across the conditional distribution.

The third strand of the relevant literature is the stress testing literature that includes

models of bank net interest margins. Most related to this paper, Covas, Rump, and Zakrajšek

(2014) use a dynamic panel quantile regression framework estimated on a sample of the 15

largest US banks that would be subject to the Federal Reserve’s Dodd-Frank Act stress

testing requirements (DFAST) over the period 1997-2011. They show that conditional density

estimation of the components of bank capital using a quantile regression framework offers

improved out-of-sample forecasting performance, owing to the ability of quantile regression

to capture nonlinearities present when observing losses in stressful environments. While they

do not detail the net interest margin component of their satellite model approach to bank

capital, they do show that some interest rate sensitivities appear relatively constant across the

conditional distribution. Giglio et al. (2021) employ a similar quantile regression framework

to examine forecasts of net trading income for 54 European Union banks subject to EU
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stress testing requirements from 2016-2020 using a method-of-moments panel data quantile

regression framework, and adopt the approach of Adrian, Boyarchenko, and Giannone (2019)

in constructing continuous density forecasts by fitting a parsimonious set of quantile forecasts

to a skewed t-distribution to estimate measures of tail risk in the cross-section of banks.

Unlike in these studies, I focus exclusively on bank net interest margins for a relatively larger

merger-adjusted sample of 313 US bank holding companies over a longer time period spanning

1998-2022, using a Bayesian approach to panel data quantile regression.

3 Bank Net Interest Margins

NIM is a measure of bank profits that are a function of prevailing interest rates, capturing

bank profits from the interest rate spread earned on maturity transformation inherent in the

traditional “borrow short and lend long” business model of typical banking institutions. NIM

is defined as the difference between the interest income and interest expense generated by an

institution, normalized by the interest-earning assets of the institution. For institution i at

time t, NIM is computed as

NIMit = Net Interest Incomeit

Interest Earning Assetsit

= Interest Incomeit − Interest Expenseit

Interest Earning Assetsit

Revenues captured by NIM are economically meaningful for banks. For example, the interest

income component of NIM on average accounts for roughly 80 percent of the total income for

US bank holding companies (henceforth “banks”).

Figure 1 shows the average NIM for banks from 1998-2022. A long-term downward trend

is visible over the period shown. This has been explained in part by a general decrease in the

level of interest rates during that period (Di Lucido, Kovner, and Zeller (2017)). Prior to 2020,

the figure illustrates that bank NIM is historically stable across economic fluctuations on

average. However, a break in the historical stability is apparent beginning in 2020. From 2018

Q4 to 2022 Q1, average NIM decreased from 3.54 to 2.85 percent of interest-earning assets,
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a 19 percent decline and a historically low level of average NIM. Once the 2022 monetary

policy tightening cycle began, average NIM recovered quickly toward pre-pandemic levels,

increasing to 3.48 percent of interest earning assets by 2022 Q4.

The stability of bank NIM is apparent when compared to fluctuations in macroeconomic

interest rates and credit risk. Figure 2 shows average NIM for banks plotted against the

3-month Treasury bill and 10-year Treasury rates from 1998-2022. The correlation in the

long-term decline between the levels of average bank NIM and interest rates is visible. Also

apparent from this figure is the fact that bank NIM remains relatively stable prior to 2020

against the backdrop of relatively more volatile interest rates. From 1998-2019, the standard

deviation of bank NIM was 0.33, while the standard deviation of the 3-month Treasury bill

rate was 1.94. Figure 3 shows average NIM for banks plotted against the spread between a

measure of macroeconomic credit risk, a BBB corporate bond reference rate, and the 10-year

Treasury bond rate, from 1998-2022. The volatility in the credit spread is most pronounced

during the 2007-2009 great financial crisis (GFC), yet bank NIM declines by a relatively

small amount during the same period.

Figure 4 shows the cross-sectional distribution of bank NIM in terms of the median,

interquartile range, and 5th-95th percentiles. Over time, there is evidence of skewness in the

upper and lower tails of the distribution. Lower tail skewness is pronounced beginning in

2019 Q2, after which the distance between the median and lower 5th percentile is between 45

to 88 basis points greater than the distance between the median and the upper 5th percentile,

coinciding with a period of declining short-term interest rates until Q1 2022. Similarly in

the GFC period, the distance between the median and lower 5th percentile was 60 basis

points greater than the distance between the median and the upper 5th percentile in 2009

Q4. These summary statistics suggest the possibility of distributional heterogeneity in the

stability of the distribution across economic fluctuations.

Decomposing bank NIM into interest income and interest expense shares of interest-

earning assets, Figure 5 plots the distributions for US banks. The stability of NIM is typically

attributed to the ability of banks to maintain a relatively constant spread between interest

income and expense. However, the figure illustrates that the ability of banks to adjust deposit

pricing or the maturity structure of the liability portfolio is constrained in periods when
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both interest expenses are already near the zero-lower bound. This is visible in 2015, when a

period of low interest rates caused the distribution of interest expenses to compress to near

zero while the interest income distribution has a relatively larger spread about the median.

This is particularly apparent in 2021 Q4, when the lower 5th percentile of the bank interest

income distribution dropped to a historical low of 1.39 percent of interest-earning assets

but interest expenses remained near zero levels, having not increased enough prior to the

pandemic period to allow for further decreases, so that bank adjustment options were already

limited when short-term interest rates quickly moved to near-zero levels.

Figure 6 further decomposes interest income and expense as a percent of interest-earning

assets into their primary constituents. On the income side, I decompose interest income into

cash flows from loans, securities, and all other sources of interest income. On the liability side,

I decompose interest expenses into demand deposits, time deposits, and all other sources of

interest expense. These plots demonstrate that the primary sources of income and expenses

historically have been loans, securities, and deposits. However, in the post-GFC period,

income from securities and expenses for deposits have migrated to historically low levels,

often near the zero lower bound.

The denominator of NIM, interest-earning assets, represents roughly 90 percent of total

bank assets on average from 1998-2022. Interest earning assets are computed as the sum

of reported quarterly averages of bank securities, loans, repos, and “other” interest-earning

balances. Figure 7 decomposes aggregate interest-earning assets into these subcomponents

over time, as a share of aggregate interest-earning assets from 2001-2022.3 Loans typically

represent the largest share of interest-earning assets followed by securities, averaging 58

percent and 21 percent over the sample period. From 2019 Q4-2022 Q1, loans’ share of

aggregate interest-earning assets decreased by 10 percentage points and was reallocated toward

securities and other interest-earning assets, the latter being largely composed of balances due

from depository institutions. While these portfolio changes occurred in aggregate, Figure

8 shows that there is a large amount of cross-sectional heterogeneity in the percentage of

interest-earning assets represented by the loan and security portfolios across banks over time,
3In the FR Y 9-c reporting forms, the “other” category of interest-earning assets is not reported until

2001.
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suggesting a wide variety of business models. By 2021 Q1, loans ranged from 31 to 87 percent

of interest-earning assets between the top and bottom 5th percentiles, and securities ranged

from 5 to 41 percent of interest-earning assets between the top and bottom 5th percentiles.

In the period following the pandemic, banks’ loan balances declined while strong deposit

growth was invested into investment securities and cash balances, which offer relatively lower

rates of return.4 Despite the reduction in loans as a share of interest-earning assets after the

onset of the pandemic period, commercial and industrial loans did experience significant but

temporary growth beginning in 2020 Q1 from increased drawdown of business lines of credit

and the Paycheck Protection Program (PPP) lending that occurred as part of the federal

response to the pandemic (Ennis and Jarque (2021)). The increase in C&I lending offered

relatively lower rates of return, as the PPP loans all carried an interest rate of 1 percent and

the commercial and industrial loan drawdowns would be priced during a period of falling

interest rates.5

These summary statistics are suggestive of bank heterogeneity in the distribution of net

interest margins that may correlate with skewness observed in the tails of the distribution, and

this heterogeneity may be more pronounced during the post-pandemic period. Heterogeneity

in sensitivities to interest rates and credit spreads speaks to variation in bank sensitivity

to macroeconomic risks, and heterogeneity in the persistence of bank NIM similarly speaks

to the degree to which past shocks to NIM influence future outcomes. Given (i) bank NIM

represents profits related to macroeconomic interest rates and credit risk, (ii) the importance

of persistence in explaining bank profits, and (iii) observable bank heterogeneity across the

NIM distribution, I ask the questions: is there heterogeneity in sensitivity to interest rates,

credit risk, and persistence across the conditional NIM distribution, and is this heterogeneity

more pronounced in the post-pandemic period?
4As discussed in the April 2021 publication of the Federal Reserve Board’s Supervision and Regulation Re-

port. See https://www.federalreserve.gov/publications/2021-april-supervision-and-regulation-report-banking-
system-conditions.htm.

5PPP loan details are defined by the SBA here: https://www.sba.gov/funding-programs/loans/covid-19-
relief-options/paycheck-protection-program/first-draw-ppp-loan.
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4 Empirical Framework

I follow Covas, Rump, and Zakrajšek (2014) to estimate a dynamic panel quantile regression

model of bank NIM. The focus of this analysis is bank NIMs’ distributional sensitivities to

macroeconomic interest rates, credit risk, and own persistence. In this setting, interest rates

and credit risk are treated as exogenous and the focus is on relationships between observed

macroeconomic fluctuations and bank NIMs. In a linear setting, dynamic panel model is

specified as

Yi,t = αi +
k∑

s=1
ϕsYi,t−s + X ′

i,t−1β + Z ′
tγ + ϵi,t, i = 1, ..., n, t = 1, ..., T, N = n × T (1)

where Y is NIM, or one of its components, realized for bank i at time t, αi is a vector of

individual intercepts meant to control for unobserved heterogeneity, X is a vector of balance

sheet controls for time-varying heterogeneity across banks over time, and Z is a vector of

macroeconomic interest rate and credit risk factors, including the level of short-term interest

rates, the slope of the yield curve, and the credit risk spread.

Quantile regression provides a natural framework for examining conditional distributional

sensitivities and allows for heterogeneous impacts of covariates across the conditional distribu-

tion. As one approach to measuring risk, this framework is motivated by its ability to capture

nonlinearities in conditional outcomes, relevant during periods of severe macroeconomic and

financial stress, and to recover the entire conditional distribution of the outcome rather than

the conditional mean. The conditional quantile function of Yi,t in equation 1 is

QYi,t
(τk|αi, Yi,t−1, ..., Yi,t−k, X ′

i,t−1, Z ′
t) = αi +

k∑
s=1

ϕsYi,t−s + x′
i,t−1β + Z ′

tγ (2)

where τk is a quantile in (0, 1).

Estimation of individual effects in quantile regression is complicated by the fact that

the use of the expectations operator is no longer valid, leading to the incidental parameters

problem that can bias the remaining parameter estimates of interest. Koenker (2004) proposes

a penalized estimation approach to deal with the incidental parameters problem associated
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with estimating many fixed effects in a nonlinear framework. To reduce this bias, I place a

LASSO shrinkage on the individual effects which improves the consistency of the remaining

parameter estimates. LASSO estimation penalizes parameter estimates by the sum of their

absolute magnitude, and results in some coefficients being shrunk exactly to zero resulting

in a sparse solution (Tibshirani (1996)). I apply this to the incidental parameter problem

present in my empirical specification, and shrinkage is achieved via a penalty term placed

on the individual effects. Regression parameters are thus estimated as the solution to the

problem

argmin
β∈R

n∑
i=1

T∑
t=1

wτ ρτ (yit − αi −
k∑

s=1
ϕsYi,t−s − x′

i,t−1β − Z ′
tγ) − λ

∑
i

|αi| (3)

where the weight wτ controls the relative influence of the τth quantile on estimation of αi,

ρτ (u) = u{τ − I(u < 0)} is the so-called “pinball loss” function used in quantile regression,

and the final term is the LASSO penalty with shrinkage parameter λ. As λ → ∞, the LASSO

penalty shrinks individual intercepts toward zero.

4.1 Bayesian Panel Quantile Regression with Adaptive LASSO

Differently than Covas, Rump, and Zakrajšek (2014), I use a flexible Bayesian model specifica-

tion that employs adaptive LASSO shrinkage on the individual effects. When the dimensions

of the design matrix used to estimate (3) are large, the optimization exercise may be costly.

LASSO shrinkage is well suited to the Bayesian paradigm, resulting from a specific prior

placed on the parameters subject to the LASSO penalty.

In the frequentist tradition, the conditional quantile function is given by

QYi,t
(τk|X′

it) = x′
itβ,

and regression coefficients are estimated as the solution to

argmin
β

β̂τ =
n∑

i=1

T∑
t=1

ρτ (yit − x′
itβ) (4)

The Bayesian approach to quantile regression emphasizes the link between minimizing
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(4) and maximizing the likelihood of the asymmetric Laplace distribution (ALD) having

location, scale, and skewness parameters µ, σ and τ , respectively, so that yij ∼ ALD(µ, σ, τ)

(Yu and Moyeed (2001)). In this case, setting mean µit = xit
′β with X = x11, ..., xnT and

y = y11, ..., ynT and assuming yit ∼ ALD(µit, σ, τ), the likelihood across n × T independent

observations is

L(β, σ|y, X) = τ(1 − τ)N

σN
exp{−

n∑
i=1

T∑
t=1

ρτ
(yit − x′

itβ)
σ

} (5)

Yu and Moyeed (2001) show that maximization of likelihood (5) is equivalent to the

minimization of (4).

I follow Aghamohammadi and Mohammadi (2017), who propose a Bayesian approach to

estimate (3) via a tractable Gibbs sampling algorithm for posterior inference in a random

intercept hierarchical framework. The Bayesian literature typically implements a Laplace

prior for LASSO regularization of parameter estimates (for example, see Park and Casella

(2008)). Aghamohammadi and Mohammadi (2017) show that, under certain assumptions,

if we place a Laplace prior on random intercepts α = (α1, ..., αn), resulting in π(α|λ, σ) =

( λ
2
√

σ
)nexp{− λ√

σ

∑n
i=1 |αi|}, and further assume ν = λ√

σ
, then the posterior distribution of α

can written as

π(α|β, y, X, Z, σ, λ) ∝ σ−Nνnexp{−
n∑

i=1

T∑
t=1

ρτ

(yit − αi − ∑k
s=1 ϕsYi t−s − x′

i t−1β − Z ′
tγ)

σ
}

× exp{−ν
n∑

i=1
|αi|}. (6)

Considering σ and λ as nuisance parameters equates maximization of (6) to minimization

of (3). To obtain an efficient Gibbs sampler, Park and Casella (2008) specify the Bayesian

LASSO by writing the Laplace distribution as a scale mixture of normals,

π(α|λ, σ) =
n∏

i=1

∫ ∞

0

1√
2πsi

exp

{
− α2

i

2si

}
× ν2

2 exp

{
−ν2si

2

}
dsi,

I follow Aghamohammadi and Mohammadi (2017) in employing exponential priors on ν2 of

the form π(ν2|ϕ) = ϕ exp{−ϕν2}, where ϕ > 0 is a hyperparameter. Similarly motivated by
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the use of a Gibbs sampling algorithm, Kozumi and Kobayashi (2011) show that the ALD

likelihood can also be treated as a scale mixture of normal distributions, so that assuming

yit|eit, σ ∼ N(αi +
k∑

s=1
ϕsyi t−s + x′

i t−1β + z′
tγ + (1 − 2τ)eij, 2σeij)

results in yij ∼ ALD(αi +∑k
s=1 ϕsyi t−s +x′

i t−1β +z′
tγ, σ, τ) when eij has an exponential

distribution with mean σ
τ(1−τ) . The remaining parameters are assumed to be mutually

independent with the following priors:

β ∼ Nk(b0, B0), γ ∼ Nj(g0, G0), σ ∼ IG(c0, d0), π(ϕ) ∝ 1
ϕ

Additional flexibility is achieved by incorporating the adaptive LASSO, used to deal with

bias in parameter estimates and inconsistent variable selection in stemming from the fixed λ

penalty term placed on all the individual effects in the traditional LASSO estimation (Zou

(2006)). This results in a modification to the the Laplace prior distribution for αi, where

π(αi|λ, σ) = ( λi

2
√

σ
)exp{− λi√

σ
|αi|},

and assuming νi = λi√
σ
, i = 1, ..., n. This flexible framework allows the LASSO penalty

term λi to vary across the individual effects.

Aghamohammadi and Mohammadi (2017) propose the following hierarchical model,

yit|eit, β, σ, αi ∼ N(αi +
k∑

s=1
ϕsyi t−s + x′

i t−1β + z′
tγ + (1 − 2τ)eit, 2σeit),

eit|σ ∼ Exp(τ(1 − τ)
σ

),

β|b0, B0 ∼ Nk(b0, B0),

γ|g0, G0 ∼ Nj(g0, G0),

αi|si ∼ N(αi, si), si|v2
i ∼ Exp(ν2

i

2 ), ν2|ϕ ∼ Exp(ϕ), π(ϕ) ∝ 1
ϕ

,

σ|c0, d0 ∼ IG(co, d0),

(7)
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where N(·) represents a Normal distribution, Exp(·) represents an exponential distribution,

and IG(·) represents the Inverse Gamma distribution. This results in a tractable Gibbs

sampling algorithm that relies on closed-form full conditional distributions.

Henceforth, I refer to the model as bayesian panel quantile regression with adaptive

LASSO (BPQR-AL). I use the Gibbs sampling algorithm proposed by Aghamohammadi

and Mohammadi (2017) to estimate the hierarchical framework and analyze the effects of

interest rates, credit risk, and persistence on bank net interest margins while controlling for

time-varying and time-invariant bank heterogeneity and reducing bias from the incidental

parameters problem. The use of adaptive LASSO offers additional flexibility in cases where

unobserved bank heterogeneity for individual banks offers relatively more information across

the conditional distribution than other banks, thus allowing the random effects to explain

more of the bank-level variation in such cases. In each set of results, I take 30,000 draws from

the Gibbs sampler and discard the first 10,000 as the burn-in samples. I use the following

weak priors on the parameters,

β ∼ Nk(0, 100I), γ ∼ Nj(0, 100I), σ ∼ IG(0.01, 0.01).

5 Data

To examine sensitivities of bank NIM to interest rates, I collect quarterly data on bank

holding companies balance sheet regulatory filings from 1998-2022 contained in form FR Y-9c

that have been adjusted for mergers. The merger-adjustment is common in the literature

used to forecast NIM, and necessary because bank mergers may change the way that income

is reported in regulatory filings. The merger-adjusted data deal with this by accounting for

mergers in the acquiring institution occurring during the calendar year prior to the actual

merger taking place. These adjustments deal with reporting issues that may result in income

data ultimately not being reported for calendar years in which banks become involved in a

merger, which could bias estimates of income correlations with other covariates.6

6The bank filing data are merger-adjusted in accordance with methods described in the appendix of William
B. English and William R. Nelson (1998), “Profits and Balance Sheet Developments at U.S. Commercial
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Using these data, I construct an unbalanced panel of top-holder US bank holding companies

(banks) from 1998-2022 having an average of at least $500 million in real total assets over

the entirety of the the sample period. I choose this asset threshold for two reasons. First,

$500 million was the relevant asset threshold for banks that would become subject to the

US implementation of the Basel III regulatory standards in the post-GFC period.7 Second,

this asset threshold partly deals with population changes due to bank asset growth and

consolidation, as well as secular trends associated with inflation.

While this threshold excludes some smaller banks early in the sample period, additional

sample attrition occurs as a result of changes in the size requirements of FR Y-9c filers that

occurs later in the sample period. Prior to March 2006, banks with at least $150 million

in total assets were required to file the FR Y-9c form. This changed three times over the

sample period: first from $150 million to $500 million in March 2006, next from $500 million

to $1 billion in March 2015, then from $1 billion to $3 billion in September 2018. These

changes were a result of inflation, consolidation, growth of asset balances, and reduction of

bank burden.8 Despite these changing requirements, some banks below the asset thresholds

continued to file the FR Y-9c form after the threshold changes occurred. During the 2015

threshold change, the sample size decreased by 8 banks between December 2014 and March

2015. During the 2018 threshold change, the sample size decreased by 47 banks between

June 2018 and September 2018. I treat these population changes as exogenous and do

not make further sample selection adjustments since they do not impact the primary point

of comparison in parameter estimates between the pre-2020 and post-2020 periods. I do,

however, examine results based on bank size subsamples that would exclude impacts of the

changing reporting thresholds for the relatively larger banks.

In addition to the issue of incidental parameters in the dynamic panel quantile regression

model, there is also a problem of bias in parameter estimates that arise from inclusion of

lagged dependent variables in linear and quantile regression frameworks using “big N, small

T” panel data (Nickell (1981); Galvao (2011)). I follow Covas, Rump, and Zakrajšek (2014)

Banks in 1997,” Federal Reserve Bulletin, vol. 84 (June), p. 408.
7The US implementation of the Basel III regulatory standards applied to banks with at least $500

million in total assets, with additional enhanced prudential regulations for the largest institutions. See
https://www.govinfo.gov/content/pkg/FR-2013-10-11/pdf/2013-21653.pdf

8See https://www.federalreserve.gov/apps/reportingforms/Report/Index/FR_Y-9C.
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in estimating the model on a relatively long time series for the panel of banks in the sample

such that each bank must be observable for at least 10 years to be included in the sample;

therefore the effect of the bias is insignificant, since the initial conditions will have little

impact on parameter estimates.9

The remaining sample selection and data cleaning criteria are as follows. I remove any

observations with values equal to zero for total assets or interest-earning assets. I also remove

any observations in the data that have missing values for variables included in the empirical

model. The described data cleaning results in an unbalanced panel of 313 unique bank

holding companies and 24,326 bank-quarter observations spanning 1998-2022. This sample,

on average, represents 85 percent of total assets across all bank holding companies in the

merger-adjusted data.

I focus on the yield curve factors (level and slope) and a credit spread as the relevant

macroeconomic variables. I use the market yield on Treasury securities at 3-month constant

maturity to measure the level of the yield curve, and the difference between the market yields

on 10-year and 3-month Treasury securities at constant maturity to measure the slope of the

yield curve. These data are collected from the H.15 interest rate data published by the Federal

Reserve Board of Governors. To construct a credit spread, I use the difference between the

ICE 7-10 year US corporate index effective field and the 10-year Treasury constant maturity

rates.

Aside from macroeconomic interest rates, credit risk, and persistence, the theoretical and

empirical banking literature suggests additional bank characteristics that can affect NIM; I

use these characteristics as control variables in the quantile regression analysis. In the micro

literature, NIM of a profit-maximizing bank is a function of, among other things, the bank’s

risk aversion, business model, market power, credit risk and interest rate risk premiums (for

example, Ho and Saunders (1981), McShane and Sharpe (1985), Allen (1988), Angbazo (1997),

Hanweck and Ryu (2005), Saunders and Schumacher (2000)). Proxies for these variables vary

in the literature, but include bank capital ratios as proxies for risk aversion, measures of

bank size or market share for market power, bank balance sheet concentrations for business

model, and balance sheet credit losses for bank-specific credit risk. Other empirical literature
9In fact, imposing this filter on my sample results in the average bank being observed for roughly 20 years.
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cites maturity mismatch (Flannery (1981), English, Van Den Heuvel, and Zakrajšek (2018)),

reliance on relatively cheap “core” deposits, and the use of interest rate derivatives (English,

Van Den Heuvel, and Zakrajšek (2018), Drechsler, Savov, and Schnabl (2021)) as bank-specific

determinants of NIM.

The empirical proxies that I include to capture these characteristics for each bank include

Tier 1 leverage ratio, log of real total assets, loans as a share of interest-earning assets,

securities as a share of interest-earning assets, gross notional interest rate derivatives share

of assets, net charge-offs as a share of total loans, core deposits as a share of liabilities, and

the maturity gap proposed by English, Van Den Heuvel, and Zakrajšek (2018).10 Table 1

presents summary statistics for all of the variables used in the empirical analysis.

6 Estimation Results

6.1 Full Sample Results

As a first point of comparison, I estimate fixed-effects OLS (FE_OLS) parameters of model 1

in addition to the BPQR-AL parameter estimates. Table 2 shows the FE-OLS and BPQR-AL

results, estimated across all banks in the sample over the period from 1998 Q1-2022 Q4. All

the estimates shown include individual bank effects and the set of balance sheet controls

described previously.

Column 1 shows the FE-OLS model parameter estimates and 95 percent confidence

intervals. The sum of the autoregressive terms in the model is roughly 0.81 and statistically

significant, suggesting a high level of persistence in bank NIM. The results imply that there is

a positive and statistically significant correlation between the level and slope of the yield curve

factors and bank NIM, consistent with findings in the previous literature. These estimates

suggest that 100 basis point increases in the 3-month Treasury bill and Treasury spread
10See the appendix of English, Van Den Heuvel, and Zakrajšek (2018) that details construction of the

maturity gap, https://ars.els-cdn.com/content/image/1-s2.0-S0304393218302101-mmc1.pdf. For a sample
of bank holding companies, this requires aggregating Call Report data up to the top-holder bank holding
company level. I follow Drechsler, Savov, and Schnabl (2021) in assuming that (i) balance sheet items without
maturity information and extremely short-maturity items such as transaction and savings deposits, cash, fed
funds bought or sold, and repo have a maturity of zero, and (ii) subordinated debt has a repricing maturity
of 5 years.
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rates result in bank NIMs increasing by roughly 7 and 9 basis points on average, respectively.

There is a negative correlation of the credit spread with NIM, although the effect is close to

zero in size and is not statistically significant.

Columns 2-6 show the posterior means and 95 percent credible intervals of the BPQR-AL

model parameters at the 5th, 25th, 50th, 75th and 95th conditional quantiles.11 The sum of

autoregressive terms in the model show that, while persistence is high across all quantiles, it

is relatively lower at the 5th and 95th quantiles and higher near the median so that shocks

to NIM that move banks toward the tails of the distribution tend to be less persistent.

Sensitivity to the yield curve factors is both relatively highest at the 5th and 95th quantiles,

and relatively lower near the median. A 100 basis point increase in the 3-month Treasury

Bill is associated with roughly 5, 3, and 8 basis point increases in NIM at the 5th, 50th and

95th conditional quantiles, respectively. A 100 basis point increase in the Treasury spread is

associated with roughly 7, 5, and 9 basis point increases in NIM at the 5th, 50th and 95th

conditional quantiles, respectively. Sensitivity to the credit risk spread moves from negative

to positive across the conditional quantiles, so that a 100 basis point increase in the credit

risk spread is associated with a 4 basis point decrease in NIM at the 5th conditional quantile

and a 4 basis point increase in NIM at the 95th conditional quantile. These results suggest

that interest rate and credit risk factors have relatively more influence at the conditional

tails of the distribution, while the conditional median of the distribution is more strongly

influenced by past realizations.

Figure 9 provides a graphical comparison of the BPQR-AL and FE-OLS estimates for

the interest rate and autoregressive variables. The figure shows that the FE-OLS estimates

generally appear to do a poor job of fitting the estimated median of the conditional distribution,

often fitting closer to the tails. As a result, the FE-OLS estimates may overstate the impact

of the interest rate factors across the central tendency of the conditional distribution, while

impact of the sum of autoregressive terms (and, to a lesser extent, the tail effects of the

credit risk factor) is understated. This would cause conditional mean forecasts to be more

responsive to contemporaneous interest rate shocks relative to conditional median forecasts.
11See the Appendix for trace and ACF plots used to monitor the convergence of the Gibbs sampling

algorithm used for the BPQR-AL model.
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The BPQR-AL model, however, suggests that the tails are relatively more responsive to

interest rate and credit risk factors, while the median of the distribution is relatively more

responsive to own lags and less so to macroeconomic variables.

Seemingly small, the BPQR-AL parameter estimates in the tails of the conditional

distribution can be economically meaningful when interest rate movements are large, as they

were during 2020-2022. For example, from 2021 Q4 to 2022 Q4, the quarterly average 3-month

Treasury bill rate increased by roughly 400 basis points as monetary policy rates reacted to

rising inflation. Over this period, the aggregate impact of the 3-month Treasury rate increase

would sum to an additional 5.6 basis point increase in NIM at the 5th conditional quantile

relative to the median, and a 20 basis point increase at the 95th conditional quantile relative

to the median. In 2021 Q4, the unconditional lower 5th percentile of the NIM distribution

was 1.17 percent of interest-earning assets, and for these banks an additional 5.6 basis points

is approximately 5 percent of total NIM. The magnitude of this difference is similar for the

top 95th percentile.

To demonstrate the impact of the adaptive LASSO in the BPQR-AL, Figure 10 shows the

posterior mean estimates of the individual bank random effects αi relative to the posterior

mean estimate of the shrinkage parameter νi at each estimated quantile. The pattern that is

exhibited in each plot resembles a Laplace distribution, reflecting the Bayesian implementation

of the LASSO shrinkage placed on the individual effects. Because the amount of shrinkage is

allowed to vary across each bank, the prior assumptions placed on the individual effects in

conjunction with the data cause estimated effects that are relatively small (large) to have a

higher (lower) amount of shrinkage placed on them, so that larger values of νi are associated

with values of αi that are closer to zero and thus could be discarded by the econometrician.12

As the model allows for individual effects that vary across the conditional distribution, these

plots suggest that some individual effects become relatively large in absolute magnitude in

the tails so that unobserved heterogeneity can be important for certain banks that experience

tail outcomes.
12There exist rules of thumb for choosing which effects to discard in a Bayesian LASSO setting in order

to achieve a more parsimonious specification. One approach is to use credible intervals to guide variable
selection, see Park and Casella (2008).
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6.2 Time Subsample Results

The literature on bank NIMs documents increased and heterogeneous sensitivity to interest

rate risk in the post-2020 period as a result of increases in the share of long-term securities held

by banks, increased non-deposit funding costs during the monetary policy tightening period

beginning in 2022, and differences in bank size (Abdymomunov, Gerlach, and Sakurai (2023),

Laliberte and Sengupta (2024), Sengupta and Xue (2022)). Based on these documented

results, it may be that the BPQR-AL model would show increased sensitivities to interest

rates in a sample including the post-2020 period relative to a sample restricted to earlier

periods, and that these increased sensitivities may vary by bank size across the conditional

distribution.

To examine changes in sensitivities in the pre-2020 and post-2020 periods, I estimate

the BPQR-AL model on banks in the sample spanning 1998-2019 for comparison to the

estimates previously shown for the full 1998-2022 sample. Figure 11 plots the BPQR-AL

posterior estimates for the autoregressive, interest rate, and credit risk variables by the time

period included in the estimation sample. Most notably, the results show that inclusion of

the 2020-2022 period in the estimation sample results in increased sensitivity to both of

the interest rate factors across the conditional quantiles, and the increase is relatively more

pronounced at both tails of the conditional distribution for the 3-month Treasury bill and

the lower tails for the Treasury spread. The top-right plot shows that estimated 3-month

Treasury sensitivities at the lower 5th quantile and median were roughly equivalent in the

1998-2019 sample. In the 1998-2022 sample, sensitivity at the lower 5th quantile increased by

2 basis points, while the median sensitivity increased by less than 1 basis point.

The remaining coefficients show relatively more stability across the conditional quantiles

in the subsample time periods. The top-left plot shows that the posterior mean estimates

for persistence decreased slightly at the upper tail of the conditional distribution; however,

there is large overlap in credible intervals of posterior mean persistence estimates in the time

subsamples. The bottom-right plot shows increased sensitivity to the credit spread at the

upper conditional quantiles, while the estimated sensitivities remain similar across the median

and lower quantiles. Given the smaller amount of variation in the credit spread relative to
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the interest rate factors, particularly the 3-month Treasury bill rate, this increased sensitivity

may have a smaller impact on the overall quantile forecasts of NIM.

6.3 Income and Expense Decomposition

The time variation of interest rate sensitivities may in part reflect changes to income and

expenses resulting from balance sheet dynamics that occurred during the post-2020 period,

as described in Section 3. To further examine the source of time variation in sensitivities to

interest rate factors, I decompose the numerator of net interest margin into the constituents

of interest income and interest expense. Interest income is decomposed into income earned

on loans, securities, and all other sources of interest income. Interest expense is decomposed

into expenses paid on demand deposits, time deposits, trading expenses, and all other sources

of interest expense. For the components of interest income and interest expense, I construct

a ratio using interest-earning assets as the denominator so that differences in the composition

of bank’s balance sheets do not impact the results. I then estimate the BPQR-AL model over

the two time period subsamples, replacing the dependent variable with each component’s

share of interest-earning assets, maintaining an AR(4) specification along with the same set

of lagged balance sheet characteristics and contemporaneous interest rate and credit risk

factors.

Because the quantile regression estimates are nonlinear in nature, a net effect of the

time variation observed in the decomposition results is not straightforward to infer. Despite

this complexity, it is reasonable to assume that the time variation of sensitivity to interest

rates observed in the lower tail of the interest income components and the upper tail of the

interest expense components may correlate with the time variation observed in the lower tail

sensitivities of bank NIM.

Figure 12 shows interest rate factor estimates from the interest income decomposition.

Dependent variables as a share of interest-earning assets are in the columns, and the associated

interest rate factor estimates are in the rows. Within the plots, each line shows the quantile-

specific estimates for the component of interest income in the two subsample time periods.

For readability, I do not show the credit risk or bank balance sheet parameter estimates,

although these were included in the estimations. The figure shows that interest income
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on loans as a share of interest-earning assets explains the largest increase in sensitivity to

both interest rate factors relative to securities and other interest income. Sensitivities are

increased for loan income across the conditional quantiles, and increase by relatively more at

the lowest conditional quantile estimates. In terms of magnitudes, the tail sensitivities of the

loan portfolio are larger for the short-term rate when compared to the Treasury spread.

Figure 13 shows the decomposition for interest expense components, which suggests that

demand deposits explain most of the increase in interest expense sensitivity. This increase is

particularly pronounced for the 3-month Treasury rate at the upper tails of the conditional

distribution. In terms of magnitudes, the size of demand deposits’ sensitivities to the 3-month

Treasury rate is notably smaller than those observed for loan income. Sensitivities for time

deposits show the opposite pattern, decreasing in the subsample that includes the post-2020

period, although the size of the decrease is relatively small across all of the conditional

quantiles. In all cases, quantile sensitivities to the Treasury spread are relatively low, as

expected for relatively short-term bank liabilities.

6.4 Bank Size Results

Another dimension by which interest rate sensitivity varies over time is bank size. Studies

have documented NIM differentials in terms of bank size (Abdymomunov, Gerlach, and

Sakurai (2023), Sengupta and Xue (2022)). Figure 14 shows that the largest (smaller) banks

tend to have relatively lower (higher) NIM, sometimes by as much as roughly 1 percentage

point. One explanation for this is that larger commercial banks tend to have relatively higher

proportions of non interest income, which could offset lower net interest incomes (Haubrich

and Young (2019)). I estimate the BPQR-AL model on persistence, interest rate, and credit

risk factors, and the balance sheet controls described in Section 4 across the conditional

distribution of NIM for banks of different size groupings. I segment the sample of banks into

three size groups based on average real total assets over the sample period to remove any

noise due to banks moving between thresholds during the sample period. The size groups

include banks less than $10 billion, $10 billion to $100 billion, and greater than $100 billion

in real total assets. These categories are related to common US definitions of community,

regional, and large banks.
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Figure 15 shows the BPQR-AL posterior estimates for the autoregressive interest rate

and credit risk variables by bank size grouping. The posterior mean estimates of the sum

of autoregressive terms for the larger banks are relatively higher at the lower tail of the

distribution, and relatively lower at the higher tail of the distribution, but the 95 percent

credible interval around estimates for the largest banks is very wide in this case, encompassing

the credible intervals of the smaller size groups. Larger banks tend to be slightly more

sensitive to the level of the yield curve in the conditional tails of the distribution, and slightly

more sensitive to the Treasury spread at the highest tail of the conditional distribution.

Median interest rate sensitivity estimates across the size groups are roughly similar, but

differences do appear in the conditional tails. A 100 basis point increase in both the 3-month

Treasury bill rate and the Treasury spread is associated with an additional 4basis point (5

basis point) increase in NIM for the largest banks relative to the smallest banks at the 5th

(95th) conditional quantile. Finally, the largest banks appear to be relatively more sensitive

to the credit risk spread at the median and higher tail of the conditional distribution, and

the relationship is positive, which suggests that these banks may do a better job of pricing

credit risk. A 100 basis point increase in the credit risk spread, slightly larger than a one

standard deviation movement, is associated with a roughly 6 basis point increase in NIM for

the largest banks relative to the smallest banks at the 95th conditional quantile.

Given the time variation in interest rate sensitivities shown previously, it is useful to

examine how the time variation changes across the size distribution. Figure 16 shows the

BPQR-AL posterior estimates for the interest rate factors by time period subsample and

bank size groups. Two interesting findings emerge from these results. First, regardless of time

period, one primary difference in the sensitivities of the interest rate factor lies in the upper

tails of the conditional distribution where the larger banks generally exhibit a higher level

of sensitivity relative to the smallest banks. Second, the increase in lower tail sensitivities

in the 1998-2022 subsample is relatively largest for the largest banks. For banks greater

than $100 billion in total assets, sensitivity to a 100basis point increase in the 3-month

Treasury bill increased from 0.04 to 0.09 basis points between the subsamples ending in 2019

and 2022, respectively, and sensitivity to a 100 basis point increase in the Treasury spread

increased from 0.03 to 0.11 basis points. These changes are roughly 4-5 times greater than
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the sensitivity changes for the smallest banks. This suggests that the largest banks that drove

the overall increase in tail sensitivity across the conditional distribution in the post-2020

period.

7 Density Forecasting

In this section, I compare density forecasts across competing models to test if the features

of the BPQR-AL model meaningfully improve the model predictions relative to alternative

model approaches. The variation in tail sensitivities over time and across banks suggests that

a bank NIM model specification that allows for heterogeneous parameter estimates should be

better suited to capturing the tails of the conditional distribution relative to the conditional

mean estimation. Additionally, the quantile-varying individual effects and adaptive LASSO

shrinkage may improve model predictions relative to the frequentist analog of the model used

by Covas, Rump, and Zakrajšek (2014) that relies on a simpler LASSO framework applied to

individual effects that are constant across quantiles.

I evaluate the density forecast performance of the BPQR-AL model relative to fixed-effect

OLS (FE-OLS) and pooled quantile regression (QR) benchmark specifications of equation

(1). Similar to Covas, Rump, and Zakrajšek (2014), I also estimate a frequentist fixed-effects

quantile autoregressive model (FE-QAR) specification based on equation (3), which imposes

a single LASSO shrinkage parameter across quantile-invariant individual effects.13 In each

case, I use the same set of model covariates reported in the previous estimation results. If the

tails of the distribution matter, if individual effects capture unobserved bank heterogeneity,

and if adaptive LASSO shrinkage on the individual effects improves upon model forecasts

then the BPQR-AL model should outperform FE-OLS, QR, and FE-QAR methods.

7.1 Density Forecast Construction

I evaluate in-sample and pseudo out-of-sample forecasts for competing model specifications.

First, I estimate each model over the period 1998-2019, which I treat as the in-sample period.
13In the FE-QAR model estimation, I follow Covas, Rump, and Zakrajšek (2014) in setting the single

shrinkage parameter λ equal to 1.
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Next, I produce pseudo out-of-sample one-quarter-ahead quantile forecasts for each bank

by updating the lagged bank characteristics and contemporaneous interest rate and credit

risk factors with data from the subsequent quarter, where the first out-of-sample quantile

forecast for each bank is computed from the existing set of in-sample model parameters.14

Then the model parameters are updated by estimating the updated set of dependent variable

realizations on the updated covariate data, after which the data are again updated, and the

subsequent out-of-sample quantile forecasts for each bank are produced. This process repeats

until the final forecast is produced in 2022 Q4.

Once the quantile forecasts are obtained, there are several possible approaches to con-

structing density forecasts in the academic literature. For the BPQR-AL, QR, and FE-QAR

models, I follow the approach of Adrian, Boyarchenko, and Giannone (2019) and Giglio et

al. (2021) in fitting the estimated conditional quantile forecasts produced to the skewed

t-distribution proposed by Azzalini and Capitanio (2003). This approach is attractive because

it allows for an estimate of the full conditional density using a parsimonious set of estimated

conditional quantiles. The form of the skewed t-distribution is,

fy(µ, σ, α, ν) = 2
σ

t(y − µ

σ
; ν) T

α
y − µ

σ

√√√√ ν + 1
ν + (y−µ

σ
)2

 , (8)

where t(·) and T (·) represent the probability density and cumulative distribution functions

of the Student t-distribution, respectively. The skewed t-distribution is an extension of

the Student t-distribution, where the parameter α regulates the skewness. The remaining

distributional parameters µ, σ and ν represent the location, scale, and fatness, respectively.

I estimate one-quarter-ahead density forecasts for each bank in the sample over the

in-sample and out-of-sample periods 1998-2019 and 2020-2022, respectively. For every bank

in every time period in the sample, the four parameters µ, σ, α, and ν are chosen to minimize

the squared distance between the estimated 5th, 25th, 75th and 95th conditional quantiles

produced by the BPQR-AL model and the same quantiles of the skewed t-distribution. As

noted by Adrian, Boyarchenko, and Giannone (2019), this is equivalent to an exactly identified
14While the model covariates include contemporaneous time (t) macroeconomic variables, this forecasting

framework treats those as known values at time (t − 1). Given that the bank data are quarterly and not
made available until multiple weeks after each quarter-end, this forecasting framework is practical in design.
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nonlinear cross-sectional regression of the predicted quantiles on the quantiles of the skewed

t-distribution.

The FE-OLS model imposes normal distribution assumptions on the conditional density

forecasts given an estimated mean and variance. Using the FE-OLS model, the one-quarter-

ahead prediction for each bank is set as the mean of the forecast distribution at each point in

time. One standard assumption of OLS with homoscedastic errors is that unobserved variance

is assumed to be constant across observations, and is estimated from in-sample residuals

resulting from each regression. The density forecasts for each bank during the in-sample

period are produced using the estimated mean and variance from the in-sample OLS results.

In the pseudo out-of-sample period, a density forecast for each bank is produced using the

estimated mean and variance that are iteratively updated at each new estimation as the

covariate data are updated.

7.2 Density Forecast Evaluation

To evaluate the performance of the density forecasts across the two models, I use the

continuous ranked probability score (Gneiting and Raftery (2007)). A continuous ranked

probability score (CRPS) that is closer to zero indicates a more accurate forecast density.

The CRPS is computed by first computing the quantile score (QS), based on the pinball

loss function that is fundamental to quantile regression. Assuming τp is a set of estimated

quantiles p in {1, 2, ..., P}, given a quantile forecast f at time t for bank i, the QS is defined

as

QSit(τp) =


(1 − τp)(fit(τp) − yit) if yit < fit(τp)

τ(yit − fit(τp)) if yit ≥ fit(τp)
(9)

Then, for a set of evenly spaced quantile estimates Q, the CRPS is computed as twice

the average of the quantile scores,

CRPSit = 2
P

P∑
p=1

QSit(τp) (10)
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Gneiting and Ranjan (2011) propose a CRPS that places additional weight on particular

regions of the density forecast to evaluate density forecasts with a focus on the tails or

central region of the density forecast. They define the quantile-weighted continuous ranked

probability score (qwCRPS) as

qwCRPSit = 2
P

P∑
p=1

γ(τp)QSit(τp), (11)

where the weighting function γ(τq) is defined to emphasize particular areas of the density

forecast. To place more weight on the left tail of the density forecast, γ(τp) is set equal to

(1 − τp)2, and to place more weight on the right tail of the density forecast, γ(τp) is set equal

to (τp)2. Finally, placing more weight on the center of the density forecast, γ(τp) is set equal

to τp(1 − τp).

I extract 199 evenly spaced quantiles from the FE-OLS, QR, and BPQR-AL density

forecasts of {0.005, 0.01, 0.015, ..., 0.995} to compute the CRPS. To compare across models,

I examine ratios of the average in-sample and out-of-sample scores across all banks and

time periods for the alternative modeling frameworks using the density forecasts and actual

outcomes for each individual bank. Ratios are computed as the average BPQR-AL score

divided by the average score of a competing model, so that a number less (greater) than

1 indicates that the BPQR-AL model has a lower (higher) average score relative to the

competing model in the given period. Assuming uncorrelated error terms across banks and

time, one can use the Diebold-Mariano (DM) t-test of average loss equality across forecasts

to statistically evaluate the differences in the CRPS metrics across model specifications for

each bank in each time period (Gneiting and Katzfuss (2014); Granger and Huang (1997)). I

use a one-sided Diebold-Mariano test as a formal test of relative model accuracy, where the

alternative hypothesis is that the BPQR-AL model is more accurate than a competing model.

In all DM test results, the model forecasts are treated as primitives, and heteroskedasticity

and autocorrelation (HAC) robust standard errors are used for inference.15

15Despite the relatively short number of periods in the out-of-sample period, the panel data allow for
greater statistical power in conducting this test.
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7.3 Alternative Model Comparison Results

Table 3 reports ratios of the average score metrics, which include the average overall CRPS,

and the average left, right, and center-weighted CRPS denoted as CRPS-L, CRPS-R, and

CRPS-C, respectively. The table includes results of a one-sided DM test where the alternative

hypothesis is that the BPQR-AL model is statistically more accurate than the competing

model. During the in-sample period, the BPQR-AL has statistically significant lower scores

across all metrics when compared to the FE-OLS model, and all but the CRPS-L metric for

the FE-QAR model. The QR model appears to perform slightly better than the BPQR-AL

model during the in-sample period; however, the DM test does not suggest any statistical

improvements relative to the BPQR-AL model. In the out-of-sample period, the BPQR-AL

model outperforms all competing model specifications across all score metrics, and in each

case the DM test suggests that the BPQR-AL forecasts are statistically more accurate than

those of the competing models. These results suggest that the BPQR-AL model provides

a statistically more accurate density forecast during the out-of-sample period overall, and

also in the tails and center region of the density forecasts for the individual banks. This

provides additional evidence that estimation of the conditional distribution and individual

effects using adaptive LASSO shrinkage improve upon density forecasts of bank NIM.

Figure 17 plots the CRPS across each model during each time period to examine where

the accuracy gains occur for the BPQR-AL model relative to the alternative models. The

BPQR-AL model outperforms the FE-OLS model in most time periods. The BPQR-AL and

QR models perform similarly except in periods where the CRPS increases for all models,

in 2020 Q2 and in all quarters during 2022, all periods of relatively large movements of the

quarterly average 3-month Treasury rates included in the model. This suggests that the

additional forecast uncertainty provided by the individual effects in the BPQR-AL model

improves the forecast accuracy.

The individual bank density forecasts can be combined at each time period such that

an aggregate density forecast is produced, which allows for a useful visual comparison of

differences across the alternative model specifications. The aggregated forecasts may also

be useful in a macro prudential setting where regulatory concerns lie around aggregate
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risks rather than bank-specific risks. Several methods exist for combining density forecasts.

I follow Giglio et al. (2021) in applying Vincentization to the individual bank quantile

forecasts to arrive at a distributional forecast of aggregate outcomes. Vincentization is a

method of combining distributions by computing a weighted average of each distribution at

the quantiles of each distribution. Specifically, assume fit(yt) is the NIM density forecast of a

given bank i at time t, and Fit(yt) is the cumulative distribution function for each bank i,

i = 1, ..., n. Given a non-negative set of weights ωi, where ∑n
i=1 ωi = 1, the combination of

the conditional quantiles estimated is given by

n∑
i=1

ωiF
−1
it (τ), 0 < τ ≤ 1

where F −1(τ) represents the quantile functions of the individual banks in the sample (see

Busetti (2017) for additional details on Vincentization).

I use Vincentization to combine the individual bank density forecasts into an aggregate

forecast for comparison to the average NIM outcome across all banks in the sample at each

time period. For simplicity, I set the ωi such that the conditional quantiles are equally

weighted. Figure 18 shows the aggregated density forecasts along with the average realization

of NIM across all banks in the sample at each time period. As before, the in-sample period is

1998-2019, and the pseudo out-of-sample forecasts begin in 2020 Q1 and continue through

2022 Q4. Relative to the QR and BPQR-AL models, the FE-OLS model produces one-quarter-

ahead forecasts with relatively more probability mass at wider intervals of NIM, suggesting a

relatively more risk-averse aggregate forecast. The QR model produces narrower aggregate

density forecasts relative to the FE-OLS and shows greater skewness in the density forecasts,

for example, in the 2007-2009 GFC period and again in the post-2020 period. The FE-QAR

model model produces the narrowest aggregate density forecasts across all specifications, and

shows relatively larger amounts of skewness in the lower tails of the aggregate distribution

until the out-of-sample period, in which both upside and downside tail risks increase.

The BPQR-AL model appears to blend some characteristics of the FE-OLS, QR, and

FE-QAR models by including individual effects in a quantile regression framework. The

aggregate BPQR-AL density forecasts have relatively larger tails compared to the QR model

31



but place lower probability mass on the tails relative to the FE-OLS model, suggesting more

forecast uncertainty relative to the QR model and lower probability of tail events relative to

the FE-OLS model. Relative to the FE-QAR model, the BPQR-AL approach has larger tails

at both ends of the aggregate distribution, likely driven by the adaptive LASSO shrinkage that

places less shrinkage on unobserved individual heterogeneity, which explains more variation

near the tails of the individual bank distributions. Additionally, in the post-2020 period, the

aggregate BPQR-AL density forecasts do a better job of capturing risks associated with the

more extreme tail movements of NIM relative to the FE-OLS, QR, and FE-QAR models.

8 Robustness Checks

I perform additional robustness checks on the BPQR-AL model specification and resulting

forecasts. First, I examine the sensitivity of the BPQR-AL model results when excluding

macroeconomic variables from the set of covariates. Next, I examine the sensitivity of the

forecast results to a specification that uses an informative Minnesota-style prior specification.

Last, I compare forecast accuracy using a specification that allows for greater flexibility based

on the size subsample results shown in Section 6.4. In each case, I compare results using the

a ratio of the CRPS and quantile-weighted CRPS of competing models, and also include a

one-sided Diebold-Mariano test to quantify the accuracy of the density forecasts and the

statistical improvement relative to alternative BPQR-AL specifications.

8.1 Importance of Macroeconomic Factors

The individual density forecasts produced by the BPQR-AL model are conditioned on four

autoregressive terms, macroeconomic factors, and a set of controls to deal with observable

and unobservable individual heterogeneity. It is useful to understand the importance of

including the macroeconomic interest rate and credit risk factors in the model, given the

relative magnitude of the summed autoregressive terms. If the macroeconomic factors are not

economically significant for model predictions, then a model design that excludes the covariate

vector Z in equation (1) may show similar or perhaps improved forecast performance. For

comparison, I estimate the BPQR-AL model of bank NIM on a set of covariates that excludes
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macroeconomic interest rate and credit risk factors but retains the remaining balance sheet

and persistence covariates for comparison against the full model.

Table 4 reports ratios of the CRPS and quantile-weighted CRPS results averaged across

banks and time during the in-sample and pseudo out-of-sample periods across model specifica-

tions, and includes results of a one-sided DM test where the alternative hypothesis is that the

BPQR-AL model that includes macroeconomic factors is statistically more accurate than the

model that excludes them. The results show that a model that includes the macroeconomic

factors, both in-sample and out-of-sample, outperforms a model that excludes those factors

across all score metrics. The DM test results also show that the models with macroeconomic

factors are statistically more accurate than the model without macroeconomic factors. Given

that credit spreads remained relatively benign during the post-2020 period while interest rate

movements were relatively large, this offers additional evidence that distributional sensitivity

to interest rates matters for bank NIMs.

8.2 Prior Sensitivity

Another dependency of the individual bank density forecasts produced by the model are the

prior specifications necessitated by the Bayesian framework, which were set to be uninformative

for the covariate parameter vectors β and γ, and scale parameter σ given the the relatively

large dimension of panel data available. Carriero, Clark, and Marcellino (2024) show that

Bayesian shrinkage can improve forecast accuracy in quantile regression estimation of tail risks

in cases where sample size may be small. Despite my large sample size afforded by the panel

setting, I check the sensitivity of the results to specifying an informative prior specification

on the vectors β and γ in the hierarchical specification of (7). To quantify the sensitivity, I

compare the density forecast performance of the model with uninformative priors relative to a

model with informative Minnesota-style priors. I follow Carriero, Clark, and Marcellino (2024)

and Carriero, Clark, and Marcellino (2020) in specifying a Minnesota-style prior specification

for the BPQR-AL model, which shrinks the lagged dependent variable coefficients by less

than the other variable coefficients while accounting for the relative standard deviations of

independent variable j and the dependent variable, σj and σnim, respectively.

In all cases, the prior mean vectors b0 and g0 remain at zero. For the intercept, the prior
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standard deviation remains uninformative, set to

Bintercept
0 = 1000σnim

For each variable j in vectors xit and zit, prior specifications are set to

Bj
0 = λ1λ2

σnim

σj

For each lag l of the dependent variable, prior specifications are set to

B l
0 = λ1

l

I estimate σnim and σj using the sample variances in the data as of each forecast date.16

The hyperparameters λ1 and λ2 are set equal to 0.2, following Carriero, Clark, and Marcellino

(2020).

Table 5 reports the ratios of the CRPS and quantile-weighted CRPS results averaged

across banks and time during the in-sample and pseudo out-of-sample periods for BPQR-AL

model specifications with uninformative priors relative to the Minnesota-style priors. The

table includes results of a one-sided DM test where the alternative hypothesis is that the

BPQR-AL model with uninformative priors is statistically less accurate than the model

with informative priors. The results show that a model with uninformative priors is not

meaningfully or statistically less accurate than the Minnesota-style prior model across the

in-sample and out-of-sample periods.

8.3 Bank Size Subsample Models

Parameter results shown in Section 6.4 suggest the possibility of parameter estimate het-

erogeneity across the interest rate factors included in the model. Results shown for density

forecasts thus far have relied on estimation across the full sample of banks, but additional

flexibility could be added to the BPQR-AL model forecasts when estimating parameters
16For the in-sample period, the standard deviation is based on the entire in-sample period. Each subsequent

standard deviation in the pseudo out-of-sample period is based on each successive update of the model
covariates.
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by the bank size groupings previously used, which group banks into size categories of less

than $10 billion, $10 billion to $100 billion, and greater than $100 billion in real total assets,

and then comparing the forecast accuracy across the size-subsample models to the pooled

model to examine if there are improvements in forecast accuracy. If parameter heterogeneity

across bank size groups is important, then the additional parameter flexibility of using the

size-subsample models could result in more accurate forecasts relative to the full sample

approach.

Table 6 reports ratios of the CRPS and quantile-weighted CRPS results averaged across

banks and time during the in-sample and pseudo out-of-sample periods for BPQR-AL model

estimations based on the full sample estimation relative to the size subsample estimations.

The table includes results of a one-sided DM test where the alternative hypothesis is that

the BPQR-AL model based on size subsamples is statistically more accurate than the model

based on the full sample. The CRPS results suggest that the size subsample model density

forecasts are statistically more accurate during the in-sample period. Perhaps unexpectedly,

these results do not hold during the pseudo out-of-sample period, where the size subsample

model is statistically equivalent to the full sample model. This could be a result of the full

sample BPQR-AL approach sufficiently capturing the size-based heterogeneity, given that a

measure of bank size is already included as a control variable in the model. The results show

that a model with uninformative priors is not meaningfully or statistically less accurate than

the Minnesota-style prior model across the in-sample and out-of-sample periods.

9 Measures of Tail Risk

At a micro prudential level, probabilistic measures of risk can be useful to banking supervisors

for identifying individual banks that may be exposed to relatively more adverse tail risks.

The BPQR-AL model allows for construction of density forecasts for each bank in the

sample at each time period. Figure 19 plots the estimated individual bank skewed-t density

forecasts from BPQR-AL pseudo out-of-sample year-end estimations from 2019 Q4-2022 Q4,

representing the final in-sample forecast and the subsequent year-end pseudo out-of-sample

forecasts. From 2019 Q4-2021 Q4, many of the bank-level density forecasts show a leftward
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location shift and increased dispersion, while some banks show increasing uncertainty as

interest rates changed and banks adjusted their balance sheets. By 2022 Q4, bank density

forecasts moved rightward as short-term interest rates increased rapidly. These plots suggest

that density forecasts of the BPQR-AL model produce variation over time and across banks

for the predicted location, scale and shape of the densities.

One way to measure tail behavior of the conditional density forecasts is the expected

shortfall and longrise approach. For a chosen probability π, the expected NIM shortfall SF

for bank i at forecast horizon t + 1 is defined as

SF NIM
i, t+1 = 1

π

∫ π

0
F̂ −1

yi, t+1| Xt, Zt+1
(τ |Xt, Zt+1)dτ

and expected NIM longrise LR is defined as

LRNIM
i, t+1 = 1

π

∫ 1

1−π
F̂ −1

yi, t+1| Xt, Zt+1
(τ |Xt, Zt+1)dτ

where F̂ −1
yi, t+1| Xt, Zt+1

is the inverse conditional CDF forecast obtained for bank i from

fitting the BPQR-AL quantile forecasts to the skewed-t distribution.

I compute expected longrise and shortfall at the 5 percent level by setting π = 0.05. To

impose economic context on the longrise and shortfall measures, I compute the measures

as a share of bank average total assets so that they may be interpreted as the change in

bank’s bottom-line profitability, return on average assets (ROA), under tail outcomes. ROA

is defined as the total net income of a bank divided by its average total assets. Net income

is important for bank regulatory capital because retained earnings is a primary way that

banks can build regulatory capital levels, suggesting that it is important for financial stability

more broadly. NIM is one component of ROA, along with noninterest income and expenses,

provisions, and other sources of net income. In this context, the expected shortfall (longrise)

can be interpreted as the estimated conditional average loss to a bank’s total profits in

extreme NIM tail events, which would then have implications for a bank’s ability to build

capital via retained earnings. I follow Giglio et al. (2021) in computing the cross-sectional

dispersion of these risk measures across banks over time.
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Figure 20 shows the distribution of ROA for bank holding companies in the sample

from 1998-2022. The plot shows the 1st, 5th, 25th, 50th, 75th, and 99th percentiles of the

distribution. In benign periods, average ROA is roughly 1.5 percent of average total assets.

During and shortly after the GFC period, average ROA decreased to 0.25 percent of average

total assets and extended to less than negative 10 percent of total assets in the extreme tails

of the distribution. In the more recent post-2020 period, bank ROA shows the largest decline

in the extreme tails of the distribution since the GFC period as a result of stressed bank NIM

and increased provision expenses.17

Figure 21 shows the 1st, 5th, 25th, 50th, 75th, and 99th percentiles of the cross-sectional

distribution of 5 percent expected longrise and shortfall changes in bank ROA from extreme

NIM tail events for all banks in the sample. In both cases, the extreme 1st and 99th tails of

the cross-sectional expected longrise and shortfall distribution show variation across economic

fluctuations. The longrise measure shows that there is a large and persistent amount of upside

potential for increased ROA across the distribution prior to and during the GFC period,

which subsequently decreased, and has since normalized back to pre-2007 levels. The shortfall

measure shows relatively more volatility at the extreme lower tails of the cross-sectional

distribution, particularly following recessionary periods. The magnitude of ROA downside

risks suggested by the expected shortfall measure peaks early in the sample period and again

in the GFC period but declines gradually afterward until a notable increase in downside risk

beginning in 2021. The size of the upside and downside risks are substantial relative to bank

ROA across the distribution. The shortfall is sizable enough to move a substantial number of

banks near or into negative ROA levels, suggesting that tail risks to bank NIM are material

to overall bank profitability.

10 Conclusion

Bank net interest margins are an important component of bank profits, which have been

historically stable, on average, and are used to build bank capital so that they matter for
17See https://www.federalreserve.gov/publications/2020-november-supervision-and-regulation-report-

banking-system-conditions.htm.
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overall financial stability. The post-2020 period has shown a break in the historical stability

of bank net interest margins against the backdrop of relatively large changes in interest rates,

and the cross-sectional distribution suggests the possibility of increased tail risks. This was at

least partially a result of interest income declining by more than interest expenses due to zero

lower bound constraints. Increased volatility in the tails of the bank NIM distribution suggests

that distributional heterogeneity is important to consider when attempting to predict bank

net interest margins, and tail risks are increasingly important for regulators and policymakers.

I quantify differential tail sensitivities of bank net interest margins to interest rates, credit

risk and own persistence in a quantile regression setting. I follow the general frameworks of

Covas, Rump, and Zakrajšek (2014) and Giglio et al. (2021), and examine a relatively large

sample of US bank holding companies with at least /$500 million in total assets from 1998-

2022. I utilize a novel Bayesian dynamic panel quantile regression approach in the empirical

analysis that deals with the problem of incidental parameter bias when applying nonlinear

estimation to panel data settings. This approach accounts for observed and unobserved

heterogeneity, and heterogeneity in sensitivities to model covariates, as well as providing

a natural framework to recover the estimated conditional distribution of bank NIM for

individual banks and aggregate outcomes.

I find evidence of heterogeneity in bank sensitivities to interest rate and credit risk in the

cross-section. I also find evidence that banks NIM sensitivity to interest rates has increased

since 2020, and show that these increased sensitivities are driven by higher interest rate

sensitivities for loan interest income and demand deposit interest expense. My results suggest

that sensitivity to interest rates increased by a relatively larger margin at the conditional

tails of the distribution relative to the median, and specifically for relatively larger banks.

The interest rate tail sensitivities that I estimate, relative to the median estimates, are

economically meaningful for bank NIM when interest rate movements are large, such as those

observed in the post-2020 period.

Lastly, I compare density forecasts implied by the BPQR-AL model against fixed-effect

OLS, pooled quantile regression, and the FE-QAR model framework used by Covas, Rump,

and Zakrajšek (2014). I show that the forecasts produced by the BPQR-AL framework

statistically outperform the competitor models in a pseudo out-of-sample framework by
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incorporating quantile-varying individual effects with adaptive LASSO shrinkage and quantile-

varying sensitivities to covariates. These results suggest that the heterogeneity estimated

by the quantile regressions with individual effects should be considered when evaluating the

sensitivity of bank NIM to macroeconomic outcomes. Robustness checks suggest that the

model forecasts are robust to prior specification and estimation sample choices, and that

macroeconomic factors matter for bank NIM forecast accuracy. Density forecasts also allow

for computation of expected shortfall and longrise measures, and these measures show that

tail behavior of bank NIM has material implications for risk to bottom-line profitability of

banks.

While suggestive, the results in this paper are not meant to be interpreted as causal given

the reduced-form approach of the model specification. Recent work has carefully explored

channels that drive heterogeneity in bank NIM (for example, Williams (2020)). Future

research could extend this analysis by offering a more complete analysis of the balance sheet

channels that drive heterogeneity across the conditional distribution in a quantile regression

context. A structural approach to describing sources of increased heterogeneity in bank NIM

in the post-2020 period would be a useful avenue in future work for generating testable model

predictions.
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Table 1: Sample includes BHCs with at least $500 million in real total assets from 1998

Q1-2022 Q4. Number of unique BHCs in data: 313. Maturity gap calculation based on

English, Van den Heuvel and Zakrajsek (2018). Source: US FRY9-c and Call Report Filings,

H.15 interest rate data, ICE Data Indices, LLC

Estimation Sample Summary Statistics, 1998-2022

Variable n Mean SD Min P25 P50 P75 Max

Dependent Variable

NIM 24326 3.60 0.93 -12.85 3.13 3.60 4.09 10.35

Financial Variables

3m Tbill 24326 1.82 1.93 0.01 0.11 1.10 3.44 6.20

10y-3m Treasury Spread 24326 1.64 1.14 -0.63 0.68 1.71 2.63 3.61

BBB-10y Spread 24326 1.59 0.83 0.72 1.10 1.42 1.81 5.80

Bank Balance Sheet Variables

Core Deposits % of Liabilities 24326 69.92 18.04 0.00 62.79 73.85 81.95 98.80

Interest Rate Derivatives % of Assets 24326 5.72 16.60 0.00 0.00 0.87 5.75 760.95

Loans % of IE Assets 24326 70.86 15.65 3.24 64.36 73.69 80.79 175.62

Maturity Gap (years) 24326 4.57 2.17 -2.03 3.01 4.29 5.88 16.31

NCO % of Loans 24326 0.47 1.06 -4.30 0.04 0.19 0.46 25.94

Real Total Assets (USD Billions, 1998=100) 24326 36.07 166.70 0.41 1.22 2.60 7.92 2266.74

Securities % of IE Assets 24326 24.84 13.10 0.00 16.00 22.72 30.95 123.65

Tier 1 Leverage Ratio 24326 9.60 3.89 -2.80 8.01 9.11 10.38 76.26
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Table 2: FE-OLS and BPQR-AL estimates, 1998-2022. Total number of bank holding

companies in sample: 313. The dependent variable is the level of NIM for bank holding

company i at time t. BQRAL posterior means represent the point estimates, and BPQR-AL

standard errors are based on 30,000 total draws, of which 10,000 are burn-in draws. FE-OLS

(BPQR-AL) 95 percent confidence (credible) intervals in parentheses. FE-OLS standard

errors are double-clustered by bank and time. Bank controls include Tier 1 leverage ratio,

log of real total assets, loans as a share of interest-earning assets, securities as a share of

interest-earning assets, gross notional interest rate derivatives share of assets, net charge-offs

as a share of total loans, core deposits as a share of liabilities, and the maturity gap proposed

by English, Van den Heuvel and Zakrajsek (2018).

FE-OLS and BPQR-AL Regression Estimates, 1998-2022

BPQR-AL Quantiles

FE-OLS 0.05 0.25 0.5 0.75 0.95

NIM (4 Lags) 0.812 0.786 0.878 0.901 0.903 0.835

[0.482,1.141] [0.749,0.825] [0.849,0.907] [0.87,0.933] [0.875,0.93] [0.8,0.867]

3m Tbill 0.069 0.048 0.031 0.034 0.046 0.084

[0.052,0.085] [0.046,0.05] [0.029,0.033] [0.032,0.035] [0.045,0.048] [0.081,0.086]

10y-3m Treasury Spread 0.093 0.069 0.043 0.047 0.062 0.094

[0.07,0.116] [0.065,0.072] [0.041,0.046] [0.045,0.05] [0.059,0.064] [0.09,0.098]

BBB-10y Spread -0.006 -0.04 -0.017 -0.002 0.011 0.043

[-0.02,0.007] [-0.043,-0.037] [-0.019,-0.014] [-0.005,0] [0.009,0.013] [0.039,0.046]

Bank Effects Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes
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Table 3: Ratio of average continuous ranked probability score (CRPS) and quantile-weighted

CRPS across alternative models. Left tail, center, and right tail-weighted CRPS are denoted

as CRPS-L, CRPS-C, and CRPS-R, respectively. Model CRPS comparisons against the

Bayesian panel quantile regression with adaptive LASSO (BPQR-AL) include (i) fixed-

effects OLS (FE-OLS), (ii) pooled quantile regression (QR), and (iii) fixed-effects quantile

autoregressive model (FE-QAR). Values less (greater) than 1 indicate the BPQR-AL model

produces a smaller (larger) CRPS relative to the comparison model. In-sample period from

1998-2019, pseudo out-of-sample period from 2020-2022. Inference from Diebold–Mariano

tests use HAC robust standard errors.

Ratio Sample CRPS CRPS-L CRPS-C CRPS-R

BPQR-AL/FE-OLS In-Sample (1998-2019) 0.86*** 0.86*** 0.87*** 0.85***

BPQR-AL/QR In-Sample (1998-2019) 1.04 1.05 1.04 1.05

BPQR-AL/FE-QAR In-Sample (1998-2019) 0.89*** 1.02 0.93*** 0.75***

BPQR-AL/FE-OLS Pseudo Out-of-Sample (2020-2022) 0.81*** 0.89*** 0.8*** 0.75***

BPQR-AL/QR Pseudo Out-of-Sample (2020-2022) 0.9*** 0.93*** 0.92*** 0.84***

BPQR-AL/FE-QAR Pseudo Out-of-Sample (2020-2022) 0.87*** 0.93*** 0.92*** 0.75***

* denotes statistical significance at the 10% level based on one-sided Diebold–Mariano tests.

** denotes statistical significance at the 5% level based on one-sided Diebold–Mariano tests.

*** denotes statistical significance at the 1% level based on one-sided Diebold–Mariano tests.
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Table 4: Ratios of average continuous ranked probability Score comparisons for BPQR-AL

model specifications that either include or exclude macroeconomic interest rate and credit risk

factors during the in-sample and pseudo out-of-sample periods. Left tail, center, and right

tail-weighted CRPS are denoted as CRPS-L, CRPS-C, and CRPS-R, respectively. Values

less (greater) than 1 indicate the BPQR-AL model produces a smaller (larger) CRPS relative

to the comparison model. In-sample period from 1998-2019, pseudo out-of-sample period

from 2020-2022. Inference from Diebold–Mariano tests use HAC robust standard errors.

BPQR-AL CRPS Measures by Inclusion of Macroeconomic Factors

Ratio Sample CRPS CRPS-L CRPS-C CRPS-R

BPQR-AL with/without Macros In-Sample (1998-2019) 0.95*** 0.96*** 0.95*** 0.93***

BPQR-AL with/without Macros Pseudo Out-of-Sample (2020-2022) 0.9*** 0.92*** 0.91*** 0.88***

* denotes statistical significance at the 10% level based on one-sided Diebold–Mariano tests.

** denotes statistical significance at the 5% level based on one-sided Diebold–Mariano tests.

*** denotes statistical significance at the 1% level based on one-sided Diebold–Mariano tests.

49



Table 5: Ratios of average continuous ranked probability score comparisons for BPQR-AL

model specifications that use uninformative or Minnesota-style priors during the in-sample

and pseudo out-of-sample periods. Left tail, center, and right tail-weighted CRPS are denoted

as CRPS-L, CRPS-C, and CRPS-R, respectively. Values less (greater) than 1 indicate

the BPQR-AL model produces a smaller (larger) CRPS relative to the comparison model.

In-sample period from 1998-2019, pseudo out-of-sample period from 2020-2022. Inference

from Diebold–Mariano tests use HAC robust standard errors.

BPQR-AL CRPS Measures by Covariate Prior Specification

Ratio Sample CRPS CRPS-L CRPS-C CRPS-R

Uninformative/Minnesota Priors In-Sample (1998-2019) 1.00 1.00 1.00 1.00

Uninformative/Minnesota Priors Pseudo Out-of-Sample (2020-2022) 0.99 1.00 0.99 0.99

* denotes statistical significance at the 10% level based on one-sided Diebold–Mariano tests.

** denotes statistical significance at the 5% level based on one-sided Diebold–Mariano tests.

*** denotes statistical significance at the 1% level based on one-sided Diebold–Mariano tests.
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Table 6: Ratios of average continuous ranked probability score comparisons for full and

size-subsample BPQR-AL model specifications during the in-sample and pseudo out-of-sample

periods. Size subsamples group banks less than $10 billion, $10 billion to $100 billion, and

greater than $100 billion for the average of the banks real total assets over the sample

period. Left tail, center, and right tail-weighted CRPS are denoted as CRPS-L, CRPS-C, and

CRPS-R, respectively. Values less (greater) than 1 indicate the BPQR-AL model produces a

smaller (larger) CRPS relative to the comparison model. In-sample period from 1998-2019,

pseudo out-of-sample period from 2020-2022. Inference from Diebold–Mariano tests use HAC

robust standard errors.

BPQR-AL CRPS Measures for Full Sample Versus Size-Based Subsamples

Ratio Sample CRPS CRPS-L CRPS-C CRPS-R

Full Sample/Size Subsamples In-Sample (1998-2019) 1.04*** 1.05*** 1.03*** 1.04***

Full Sample/Size Subsamples Pseudo Out-of-Sample (2020-2022) 0.99 1.00 0.99 0.98

* denotes statistical significance at the 10% level based on one-sided Diebold–Mariano tests.

** denotes statistical significance at the 5% level based on one-sided Diebold–Mariano tests.

*** denotes statistical significance at the 1% level based on one-sided Diebold–Mariano tests.
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Figure 1: Average annualized bank net interest margin, 1998-2022. Vertical grey areas

represent NBER-defined US recessions. Sample excludes bank holding companies with zero

balances of total assets, interest-earning assets, or loans. Source: Merger-Adjusted FRY9-c

Data (MAY9c)
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Figure 2: Average annualized bank NIM and selected interest rates, 1998-2022. Vertical

grey areas represent NBER-defined US recessions. Sample excludes bank holding companies

with zero balances of total assets, interest-earning assets, or loans. Source: Merger-Adjusted

FRY9-c Data (MAY9c), H.15 Selected Interest Rates.
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Figure 3: Average annualized bank NIM and BBB-10y spread, 1998-2022. Vertical grey

areas represent NBER-defined US recessions. Sample excludes bank holding companies with

zero balances of total assets, interest-earning assets, or loans. Vertical grey areas represent

NBER-defined US recessions. Source: Merger-Adjusted FRY9-c Data (MAY9c), H.15 Selected

Interest Rates, ICE Data Indices, LLC.
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Figure 4: Distribution of Net Interest Margin (annualized), 1998-2022. Shaded areas represent

5th, 25th, 75th, and 95th percentile cross-sectional outcomes, and the solid black line represents

median cross-sectional outcome. Sample excludes bank holding companies with zero balances

of total assets, interest-earning assets, or loans. Source: Merger-Adjusted FRY9-c Data

(MAY9c). Vertical grey areas represent NBER-defined US recessions. Source: US FRY9-c

Filings.
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Figure 5: Distribution of Interest Income and Interest Expense as a Percent of Interest-

Earning Assets, 1998-2022. Solid line indicates cross-sectional median, dark shaded areas

indicate interquartile range, and light shaded areas indicate 5th-95th percentiles. Sample

excludes bank holding companies with zero balances of total assets, interest-earning assets, or

loans. Vertical grey areas represent NBER-defined US recessions. Source: Merger-Adjusted

Y-9c (MAY9c).
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Figure 6: Income and Expense decomposition of US bank net interest margin, 1998-2022.

Solid line indicates cross-sectional median, dark shaded areas indicate interquartile range, and

light shaded areas indicate 5th-95th percentiles. Vertical grey areas represent NBER-defined

US recessions. Source: Merger-Adjusted Y-9c (MAY9c).
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Figure 7: Aggregate components of interest-earning assets as a percent of total interest-

earning assets, 2001-2022. 1998-2000 excluded from plot because the "other" category of

interest-earning assets was not reported until 2001. Sample excludes bank holding companies

with zero balances of total assets, interest-earning assets, or loans. Vertical grey areas

represent NBER-defined US recessions. Source: Merger-Adjusted FRY9-c Data (MAY9c)
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Figure 8: Distribution of loan and security portfolios as a percent of interest-earning assets,

1998-2022. Solid line indicates cross-sectional median, dark shaded areas indicate interquartile

range, and light shaded areas indicate 5th-95th percentiles. Sample excludes bank holding

companies with zero balances of total assets, interest-earning assets, or loans. Vertical grey

areas represent NBER-defined US recessions. Source: Merger-Adjusted Y-9c (MAY9c).
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Figure 9: BPQR-AL Quantile Parameter Estimates, 1998-2022. BPQR-AL model estimated

at 5th, 25th, 50th, 75th and 95th conditional quantiles. 35,000 total draws taken from

MCMC Gibbs sampling algorithm with 25,000 burn-in draws. Solid black lines represent

posterior mean estimates, and shaded areas represent 95% credible intervals. Dashed red line

represents FE-OLS estimates. Bank controls in the estimated model include Tier 1 leverage

ratio, log of real total assets, loans as a share of interest-earning assets, securities as a share

of interest-earning assets, gross notional interest rate derivatives as a share of assets, net

charge-offs as a share of total loans, core deposits as a share of liabilities, and the maturity

gap proposed by English, Van den Heuvel and Zakrajsek (2018).
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Figure 10: BPQR-AL Individual Random Effects (alpha) Relative to Shrinkage Parameter

(nu), 1998-2022. BPQR-AL model estimated at 5th, 25th, 50th, 75th and 95th conditional

quantiles. 35,000 total draws taken from MCMC Gibbs sampling algorithm with 25,000

burn-in draws.
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Figure 11: BPQR-AL Quantile Parameter Estimates by Time Period subsamples spanning

1998-2019 and 1998-2022. BPQR-AL model estimated at 5th, 25th, 50th, 75th and 95th

conditional quantiles. 35,000 total draws taken from MCMC Gibbs sampling algorithm

with 25,000 burn-in draws. Solid lines represent posterior mean estimates, and shaded areas

represent 95% credible intervals.
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Figure 12: BPQR-AL Quantile Parameter Estimates by Time Period subsamples spanning

1998-2019 and 1998-2022. The ’other’ category sources of interest income includes trading,

balances due from depository institutions, fed funds and repo, and other. BPQR-AL model

estimated at 5th, 25th, 50th, 75th and 95th conditional quantiles. 30,000 total draws taken

from MCMC Gibbs sampling algorithm with 10,000 burn-in draws. Solid lines represent

posterior mean estimates, and shaded areas represent 95% credible intervals.
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Figure 13: BPQR-AL Quantile Parameter Estimates by Time Period subsamples spanning

1998-2019, and 1998-2022. The ’other’ category of interest expenses includes subordinated

notes and debentures, fed funds and repo, and other. Measures of interest expense on

foreign deposits not included. BPQR-AL model estimated at 5th, 25th, 50th, 75th and

95th conditional quantiles. 30,000 total draws taken from MCMC Gibbs sampling algorithm

with 10,000 burn-in draws. Solid lines represent posterior mean estimates, and shaded areas

represent 95% credible intervals.
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Figure 14: Average Net Interest Margin (Annualized), by Size, 1998-2022. Vertical grey areas

represent NBER-defined US recessions. Source: Merger-Adjusted FRY9-c Data (MAY9c)
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Figure 15: BPQR-AL quantile parameter estimates by bank size group, 1998-2022. Bank

size grouping defined by average total assets over the entire sample period. BPQR-AL model

estimated at 5th, 25th, 50th, 75th and 95th conditional quantiles. 30,000 total draws taken

from MCMC Gibbs sampling algorithm with 10,000 burn-in draws. Solid lines represent

posterior mean estimates, and shaded areas represent 95% credible intervals.
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Figure 16: BPQR-AL Interest rate factor quantile parameter estimates by bank size group

and time period. Bank size grouping defined by average total assets over the entire sample

period. BPQR-AL model estimated at 5th, 25th, 50th, 75th and 95th conditional quantiles.

30,000 total draws taken from MCMC Gibbs sampling algorithm with 10,000 burn-in draws.

Solid lines represent posterior mean estimates, and shaded areas represent 95% credible

intervals.
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Figure 17: Pseudo out-of-sample CRPS by time period across alternative models. Figure

includes fixed-effects OLS (FE-OLS), pooled quantile regression (QR), and Bayesian panel

quantile regression with adaptive LASSO (BPQR-AL). Pseudo out-of-sample period spans

2020-2022.
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Figure 18: Aggregate NIM density forecasts by model. Plot includes fixed-effects OLS (FE-

OLS), pooled quantile regression (QR), fixed-effects quantile autoregression (FE-QAR) and

Bayesian panel quantile regression with adaptive LASSO (BPQR-AL). Density forecasts for

the QR and BPQR-AL models are estimated from the model-specific quantile forecasts fitted

to the skewed-t distribution proposed by Azzalini and Capitanio (2003). Density forecasts

aggregated across banks in each period using Vincentization. Shaded areas represent 1st, 5th,

25th, 75th, 95th, and 99th percentiles predictions, solid red line represents median prediction,

and dashed black line represents average actual NIM outcome. Dashed vertical line represents

final in-sample prediction; one-quarter-ahead pseudo out-of-sample predictions begin in 2020

Q1. Vertical grey areas represent NBER-defined US recessions.
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Figure 19: Individual bank density forecasts based on BPQR-AL pseudo out-of-sample

estimations. Density forecasts are estimated from the BPQR-AL quantile forecasts fitted to

the skewed-t distribution proposed by Azzalini and Capitanio (2003).
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Figure 20: Return on assets (annualized) distribution of bank holding companies, 1998-2022.

Shaded areas represent 1st, 5th, 25th, 75th, 95th, and 99th percentiles. Sample excludes

bank holding companies with zero balances of total assets, interest-earning assets, or loans.

Source: Merger-Adjusted FRY9-c Data (MAY9c)
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Figure 21: 5 percent expected longrise and shortfall of the change in bank return on assets

(ROA) implied by individual bank BPQR-AL NIM forecasts. In-sample one-quarter-ahead

predictions from 1998-2019, pseudo out-of-sample one-quarter-ahead predictions begin in

2020 Q1 and end in 2022 Q4. Shaded areas represent 1st, 5th, 25th, 75th, 95th, and 99th

percentiles. Density forecasts are estimated from the BPQR-AL quantile forecasts fitted to

the skewed-t distribution proposed by Azzalini and Capitanio (2003)
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14 Appendix

14.1 BPQR-AL Trace and ACF Plots

To examine the convergence of the Gibbs sampling algorithm used to estimate the BPQR-AL

model, I plot the trace plots and autocorrelation function plots for the parameters in the

model. I produce a set of such plots for each of the five conditional quantiles estimated, being

the 5th, 25th, 50th, 75th, and 95th quantiles. The trace plots show that the Gibbs sampler

generally converges after the burn-in draws are discarded. The autocorrelation function

plots show that the parameters of the model become reasonably stationary, although some

autocorrelation remains for some of the balance sheet parameters.

Figure 22: BPQR-AL Trace Plots from estimation on the full sample of banks spanning

1998-2022. BPQR-AL model estimated at 5th, 25th, 50th, 75th and 95th conditional quantiles.

30,000 total draws taken from MCMC Gibbs sampling algorithm with 10,000 burn-in draws.
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Figure 23: BPQR-AL Trace Plots from estimation on the full sample of banks spanning

1998-2022. BPQR-AL model estimated at 5th, 25th, 50th, 75th and 95th conditional quantiles.

30,000 total draws taken from MCMC Gibbs sampling algorithm with 10,000 burn-in draws.
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Figure 24: BPQR-AL Trace Plots from estimation on the full sample of banks spanning

1998-2022. BPQR-AL model estimated at 5th, 25th, 50th, 75th and 95th conditional quantiles.

30,000 total draws taken from MCMC Gibbs sampling algorithm with 10,000 burn-in draws.
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Figure 25: BPQR-AL Trace Plots from estimation on the full sample of banks spanning

1998-2022. BPQR-AL model estimated at 5th, 25th, 50th, 75th and 95th conditional quantiles.

30,000 total draws taken from MCMC Gibbs sampling algorithm with 10,000 burn-in draws.
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Figure 26: BPQR-AL Trace Plots from estimation on the full sample of banks spanning

1998-2022. BPQR-AL model estimated at 5th, 25th, 50th, 75th and 95th conditional quantiles.

30,000 total draws taken from MCMC Gibbs sampling algorithm with 10,000 burn-in draws.
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Figure 27: BPQR-AL ACF Plots from estimation on the full sample of banks spanning

1998-2022. BPQR-AL model estimated at 5th, 25th, 50th, 75th and 95th conditional quantiles.

30,000 total draws taken from MCMC Gibbs sampling algorithm with 10,000 burn-in draws.
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Figure 28: BPQR-AL ACF Plots from estimation on the full sample of banks spanning

1998-2022. BPQR-AL model estimated at 5th, 25th, 50th, 75th and 95th conditional quantiles.

30,000 total draws taken from MCMC Gibbs sampling algorithm with 10,000 burn-in draws.
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Figure 29: BPQR-AL ACF Plots from estimation on the full sample of banks spanning

1998-2022. BPQR-AL model estimated at 5th, 25th, 50th, 75th and 95th conditional quantiles.

30,000 total draws taken from MCMC Gibbs sampling algorithm with 10,000 burn-in draws.
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Figure 30: BPQR-AL ACF Plots from estimation on the full sample of banks spanning

1998-2022. BPQR-AL model estimated at 5th, 25th, 50th, 75th and 95th conditional quantiles.

30,000 total draws taken from MCMC Gibbs sampling algorithm with 10,000 burn-in draws.
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Figure 31: BPQR-AL ACF Plots from estimation on the full sample of banks spanning

1998-2022. BPQR-AL model estimated at 5th, 25th, 50th, 75th and 95th conditional quantiles.

30,000 total draws taken from MCMC Gibbs sampling algorithm with 10,000 burn-in draws.
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