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Liquidity Measurement O .- R

Why we care

e Liquidity is crucial to market functioning — “getting to cash” for contract settlement
e llliquidity is a common feature of market stress
e Vast research literature

Why it’s challenging

e Latent - illiquidity often unobserved until it’s too late
* Nonlinear — small fluctuations may not be a good guide for large events
e Emergent — the whole is not the sum of the parts
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System-wide Liquidity Measurement

TED Spread
2007 — 2009
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Market Microstructure Invariance

e Kyle and Obizhaeva (2014)
“Market Microstructure Invariants: Theory and Empirical Tests”
e Daily measure
*  Works for many markets (“invariant”)
* The calibrated price-impact trading cost, C(X), in basis points:

CX) =

o [8.21 W 3 250 W 5 x
0.02 | 10° ((0.02)(40)(106)) T ((0.02)(40)(106)) (0.01)V

Where:

e 0o = expected volatility

e W = “trading activity” = price x volume x volatility
e X =order size
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Interpreting Market Microstructure Invariance
* “Business time” in local markets is paced by “betting” activity — a Poisson process
Trading cost, C, as a 3/2 power to normalize
response function to to business time
trading impulse, X Normalized
| _ /// trading
: First-order o impulse
i volatility effect “Betting” e Normalized ™, i
; activity betting activity
| 1 [ i | | M1 | |
CéX) o 8.21( % )'1/3 . 2.50( % )1/3 X
~0.02] 104 (0.02)(40)(109) 104 \(0.02)(40)(10°) (0.01)V
L J L |
Bid-ask spread Market impact
component component
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Examples of Market Liquidity Measures
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Latent Liquidity Structure

Hidden Markov Chain for observed liquidity

* For each market, estimates a “latent” or unobserved level of liquidity

e Bayesian Hierarchical Model; Inference using Markov Chain Monte Carlo
e Detected three distinct liquidity states (levels of the price impact measures)
 Estimated level of liquidity for each state and probability of being in a state

HMWC: CR3P SICE Data

Pasterior State 1 Frobability: CRSP SICE Data
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Average Estimated State Probabilities
(Hidden Markov Chains, 33 series, Apr. 2004 — Mar. 2014)
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Mixed Price-Impact States
4 Markets, Daily, 2007 — 2009
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Mixed Price-Impact States
4 Markets, Daily, 2004 — 2014
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Filtered Version

Filter and Hidden Markov Chain

Filtered liquidity (red) mean reverts around a “latent” level of liquidity (green)

Log of Kyle-Obizhaeva Measure

Improvements over initial HMC model

— Lessens the impact of outliners

— More parsimonious model (with respect to the number of latent states)

Filter and HMC: WTI Front-Manth Contract Data

Pasterior State 1 Prabahility. WTI Front-Maonth Contract Data
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Comparison with Hidden Markov Chain

HMC: WTI Front-Month Contract Data Posterior State 1 Probability: WTI Front-Month Contract Data
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What is driving the hidden Markov models?

 How are macro summaries of the financial markets/economy related to changes in the
latent liquidity states?

e Using a Multivariate (multiple markets) filtered Hidden Markov Chain model
— Have estimates of being in each state for every market at each point in time
— Treat as a choice problem and use a Multinomial Probit model

State Identification for CRSP SIC3 Equity Portfolio State Identification for CRSP SIC8 Equity Portfolio
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Source: CRSP, Mergent, Bloomberg, WRDS, FINRA, OFR analysis
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What is driving the hidden Markov models?

 Considered 11 financial market/macro indicators (such as inflation, the yield curve, dollar index,
etc.) to predict each latent state.

Posterior Mean Posterior StDev t-Stat
Macro Variable State 2 State 3 State 2 State 3 State 2 State 3
Intercept  -0.64%*  -1.01%* 0.02 0.01 -40.27  -102.11
VIX® 0.62%* 0.26%* 0.03 0.02 23.77 15.67
WTT 0.83%*  _(0.23%* 0.03 0.01 30.65 -16.53
3m Repo Rate 0.68%*  -0.41** 0.02 0.01 38.28 -49.12
TED Spread 0.49%*  -0.09%* 0.03 0.01 18.53 -10.98
Yield Curve (10y-2y) 0.19%*  _0.38%* 0.02 0.04 9.66 -56.07
S&P 500 P/B Ratio 0.68%*  -0.13%* 0.03 0.01 23.85 -9.86
Dow Jones Real Estate Index — -1.17%* 0.13%%* 0.02 0.01 -64.48 11.69
Moody’s Baa Index  -0.67** 0.47%* 0.02 0.01 -43.57 60.83
LIBOR OIS Spread  -0.64™* 0.13%* 0.05 0.02 -13.07 7.38
DXY Dollar Index  -0.39%*  -0.37%* 0.04 0.01 -10.67 -41.05
U.S. 5y Breakeven Inflation  -0.03 0.00 0.02 0.01 -1.43 0.36

¥ Significant at a 99% confidence level

MCMC Average Hit Rate = 66%, Naive Hit Rate = 33%

Source: CRSP, Mergent, Bloomberg, WRDS, FINRA, OFR analysis
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Can we predict macro variables (and then liquidity)?
 Hidden liquidity states
e Macro drivers of hidden states (predict these, predict liquidity)

Equities Posterior State 1 Prabability: Average (blue) Probit Predicted Awg (red)
1 T T T T ]

1 1 1 1 1
2004 2005 2005 2010 2012 2014

Equities Posterior State 2 Praobability: Average (blue) Probit Predicted Awg (red)
T T T T

Equities Posterior State 3 Prabability: Average (blue) Probit Predicted Awg (red)
T T T T

1F ]

o5k .
IV
i 1 1 1 1 1
2004 20065 2005 2010 2012 2014

OFFICE OF FINANCIAL RESEARCH

. . . . . . . . Source: CRSP, Mergent, Bloomberg,
16 Views expressed in this presentation are those of the speaker(s) and not necessarily of the Office of Financial Research. WRDS, FINRA, OFR analysis



Hierarchical Model

What is driving the hidden Markov models?

= - scaled (blue) Probit Predicted Lwyg (red)
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Hierarchical Model

What is driving the hidden Markov models?

TED Spread - scaled (blue) Probit Predicted Awvg (red)
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What is driving the hidden Markov models?

Moody's Corp BAA Bond Yield - scaled (blue) Probit Predicted Awvg (red)
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Tools: Accounting for Missing Data

* Incorporating a feature where we can have missing observations in our input data

The missing values will be imputed as part of the Markov Chain Monte Carlo analysis
e  The program will assume that a ‘reasonable guess’ of the missing value comes in with the dataset

Tools: Accounting for data outliers

Some portfolios of liquidity metrics have extreme outliers that can adversely affect the hidden Markov
chain estimation

e A data truncation routine is being developed to help improve the accuracy when using volatile data that
may imply an extreme state that does not exist

Alternative measures of liquidity

e  Our initial analysis was run on Kyle price impact measures; we have also run on turnover and bid-ask; plan
to expand to more measures of liquidity

Alternative asset markets

 Ourinitial analysis looked at the equity markets, corporate bond markets, and VIX and WTI futures
markets; we plan to expand to other contracts/securities and eventually add an international aspect
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Thanks!
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