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1 Introduction

Why are causal effects of greater interest than descriptive statistics? Causal effects are thought

to be useful for predicting the future state of the world in ways that descriptive statistics are

not.1 Despite this intended use of causal effects and the careful attention given to the assumptions

required for their identification, the assumptions required to predict with causal effects have received

little formal treatment.

This paper explicitly connects the identification of causal effects in past data with the prediction

of future experience. Focusing on direct and total effects, which are defined in terms of how the

corresponding intervention to the Data Generating Process (DGP) affects covariates, I show that

while identifying each distinct type of effect requires different assumptions, the same is true for

prediction.2 Unfortunately, the assumptions necessary for identification and prediction do not

coincide, and so there is a tradeoff: Stronger assumptions about covariates must be invoked in the

identification stage when using direct effects and in the prediction stage when using total effects.3

The relative strengths of direct and total effects are generated by a fact I call the problem of

context: Treatment always influences the outcome variable in combination with covariates. I show

how the relative strength of total effects for identification results from the response of covariates to

variation in treatment. This feature of the DGP impedes scientists from identifying direct effects,

which requires not only that an intervention would randomize treatment, but that it would also

hold covariates at fixed values. In contrast, random variation in treatment is sufficient to identify

total effects. The relative difficulty of identifying direct effects has received much attention in

the literature (Deaton (2010), Rosenzweig and Wolpin (2000), Keane (2010), White and Chalak

(2013), Heckman (1997), Imbens (2010), Freedman (1987), Holland (1988)).

I also show how the relative strength of direct effects for prediction results from changes to the

process generating covariates. Remember the problem of induction: Because future experience is

outside the support of the data, any prediction is based on unverifiable assumptions about how the

DGP evolves over time. A scientist predicting with total effects must make restrictive assumptions

1Zellner (2007) follows Jeffreys (2011) and others to distinguish between two key steps of science as being (1)
Description of the past, and (2) Generalization/Prediction of future (or as of yet unobserved) experience. Angrist
(2004) notes that “empirical research is almost always motivated by a belief that estimates for a particular context
provide useful information about the likely effects of similar programmes or events in the future” (p C52). Simi-
larly, Angrist and Pischke (2009) “believe that the most interesting research in social science is about questions of
cause and effect . . . , ” because “A causal relationship is useful for making predictions about the consequences of
changing circumstances or policy; it tells us what would happen in alternative (or ‘counterfactual’) worlds” (p 3).
Heckman and Vytlacil (2007) (pp 4787-92) and Manski (2007) (p 6) contrast this common goal in economics with a
competing view that understanding causal effects adds to “knowledge” that is useful in some general sense.

2I define covariates as observable (but not necessarily observed) variables other than treatment that causally
influence the outcome variable. As discussed in the paper, direct effects are useful for predicting outcomes under
interventions allocating treatment while holding the values of covariates fixed (Pearl (2014), Robins et al. (2009)).
Total effects predict outcomes under interventions allocating treatment while holding the process generating covariates
fixed (Angrist et al. (1996)). Because covariates can respond to treatment as a part of this process, interventions
allocating treatment in this way can influence the outcome variable through any number of covariates known as
mediators (Imai et al. (2010), VanderWeele (2009), Heckman and Pinto (2013)).

3This tradeoff is under-appreciated because internal validity has received more formal attention than external
validity in the literature contrasting the structural and experimental approaches devoted to one effect or the other.
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about the evolution of the DGP: All features of the DGP will remain the same.4 In contrast, direct

effects allow for prediction when only some features of the DGP remain the same.

Haavelmo (1944)’s famous example helps to illustrate the identification-prediction tradeoff rep-

resented by direct and total effects. Identifying the total effect of gas pedal position on the speed

of a car requires only data with random variation in gas pedal position. But in terms of Woodward

(2003)’s notion of degrees of invariance, gas pedal position and speed have a weakly invariant rela-

tionship.5 Intervening to change gas pedal position would not change the car’s speed in the same

way if the process generating any number of covariates were different, such as the incline of the road,

fuel type, tire traction, spark plug or overall engine design, overall weight, aerodynamics of the car’s

body, etc. While the process generating the analogous covariates might not change over time and

environment for physical systems, this is not the case in social systems due to human agency. In

social systems, the process generating covariates may change enough that the appropriate analogy

for the DGP in Haavelmo’s example is that of a car frequently altered by a pit crew.

Understanding the identification-prediction tradeoff has major implications for the current lit-

erature, which I show by interpreting estimates of returns to schooling in light of the identification-

prediction tradeoff. I cite evidence that a long list of covariates that are determined in response

to educational attainment also have large effects on wages, including on-the-job training; partici-

pation in job training programs; self-employment; vocational education; criminal behavior; arrest;

incarceration; fertility; household formation; geographic location; military service; working while

in school; smoking; and neighborhood quality. Selection into these covariates is likely to result in

violations of the direct effect exclusion restriction requiring randomized and controlled variation in

treatment (Deaton (2010), Rosenzweig and Wolpin (2000), Keane (2010)).

In such cases where we do not expect to observe randomized and controlled variation in treat-

ment, randomized variation in treatment, and therefore identification of total effects, may be the

best we can hope to observe (Imbens (2010)). But thinking in terms of returns to schooling, since

human behavior related to selection into the above covariates is likely to change over time, so too

are the total effects of the corresponding DGPs likely to change. If total effects of social systems

are unstable over time, why should they be more useful than descriptive statistics for predicting

the outcome variable under interventions manipulating the treatment variable?

Explicitly connecting identification and prediction links the literature on causal effects to the

macroeconomic literature using theory to construct predictions when the process generating co-

4When the DGP does not change over time the main obstacle to prediction is linking Local Average Treatment
Effects (LATEs, Imbens and Angrist (1994)) relevant to a particular subpopulation to the ATE summarizing infor-
mation about the DGP for the entire population (Angrist (2004)). Generalizability in terms of subpopulations is only
one aspect of external validity, however (Campbell and Stanley (1963), Shadish et al. (2001)). The cross-sectional
assumptions that allow a researcher to construct one type of effect from another at a given point in time need not
imply the temporal stability assumptions necessary for predicting the future with causal effects (Angrist (2004),
Heckman and Vytlacil (2001)). Alternatively, weak exogeneity does not imply super exogeneity (Engle et al. (1983)).

5This recent work in philosophy would characterize specific causal effects neither as exceptionless laws of nature
nor as complete accidents, but rather as features of a DGP having a degree of invariance located somewhere between
these all-or-nothing extremes (Woodward (2000), Woodward (2003)). This analysis has been strongly influenced by
Woodward (2003)’s argument that generalizations invariant under some interventions need not be invariant under all
others.
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variates is dynamic (Lucas (1976), Kydland and Prescott (1977)).6 If we define credibility as the

strength of assumptions required to make a claim (Manski (2007)), then explicitly connecting iden-

tification and prediction also highlights that the credibility revolution in empirical economics has

been focused on only half of the problem: Identifying causal effects in past data. Because direct and

total effects have relative strengths for identification and prediction, so too do the structural and

experimental approaches devoted to one effect or the other. From the structural perspective, it is

justified to exert extra effort to identify direct effects (Mattei and Mealli (2011), Huber (2013)) and

to think about ex-ante evaluation in addition to ex-post evaluation (Wolpin (2007), Carrell et al.

(2013)). From the experimental perspective, it is justified to exert extra effort to find identifying

variation (Angrist and Pischke (2010), Imbens (2010)) and to investigate whether the empirical

content of a structural model is supported by past data (Freedman (1987), Holland (1988)). Fi-

nally, explicitly connecting identification and prediction helps to extend the formal analysis of

transportability (Only recently begun: See Pearl and Bareinboim (2011), Bareinboim and Pearl

(2013b), Bareinboim and Pearl (2013a), Angrist (2004).) to populations for which not even passive

observations can be collected (ie, populations in the future).

The paper proceeds as follows: Section 2 defines the set of DGPs to be considered in the paper.

I study DGPs in which an outcome variable is causally determined by four variables: treatment,

an observed covariate, an unobserved covariate, and an unobservable covariate. I focus on the

complications that arise from changes over time to the process generating covariates by considering

DGPs in which treatment is both static and randomly assigned at each point in time.7 Section 3

presents three definitions of causal effects, and this Section, even more than the rest of the paper,

owes a strong debt to the lines of research conducted by James Heckman and coauthors and Judea

Pearl and coauthors. Section 4 discusses the identification of these causal effects in past data, using

four simple DGPs to illustrate its points. This Section shows that distinct exclusion restrictions

are required to identify direct and total effects, and it is shown in an Appendix that as a result

one person’s bias is another person’s identification. Section 5 states the assumptions necessary to

predict future effects from causal effects identified in past data, and makes clear that researchers’

choice between direct effects and total effects represents a tradeoff between the generality of the

DGP that can be studied in the past and the generality of the DGP for which the future can be

predicted. Section 6 discusses implications for the literature, with a focus on the fact that LATE

and MTE estimates of returns to schooling are total effects. Section 7 concludes.

6In terms of the analysis in this paper, a simple version of the Lucas (1976) critique can be restated as Xt being
an indicator for guards at Fort Knox, Dt being an indicator for an attack on Fort Knox, and Yt being the gold stolen
from Fort Knox with Yt

←−= δDt − δDtXt. Total effects will change, and therefore so will decisions about whether to
intervene to allocate treatment, when all features of DGP stay the same over time except for the process generating
the covariate Xt (fX

t ).
7This includes, but is not limited to, dynamic decision rules (ie, dynamic principal strata (Frangakis and Rubin

(2002)). A more complicated version of the issues studied in this paper also apply to the DGPs studied in the
dynamic treatment effects literature where treatment and selection into treatment are dynamic (Robins (1986),
Lechner and Miquel (2010), Heckman and Navarro (2007)). The key distinction for the issues studied in this paper is
not a focus on selection into covariates over selection into treatment, but rather that the dynamics under consideration
will occur from the present moment into the future instead of occurring entirely in the past.
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2 Data Generating Processes

Suppose that at time t ∈ N data are generated by a Data Generating Process (DGP) in which

the outcome variable (Yti) for each individual i is causally determined by two observed variables,

treatment (Dti) and observed covariates (Xti), as well as unmeasured covariates (UY
ti ), or additional

factors not observed by the econometrician. The unmeasured covariates can be broken down into

those factors that are unobserved (Eti) and those that are unobservable (ǫti) at the given level of

measurement. The unobserved covariates Eti can be further broken down into permanent (EP
ti )

and malleable (EM
ti ) factors.

Where variables Z are instruments, U are unmeasured variables, and Θ represents a vector of

parameters, the DGP Dt is characterized by the following structural equations:

EP
ti
←−= fP

t (UP
ti ; ΘP

t ) (1)

Dti
←−= fD

t (UD
ti ; ΘD

t ) (2)

Xti
←−= fX

t (Dti, U
X
ti ; ΘX

t ) (3)

EM
ti
←−= fM

t (Dti, U
M
ti ; ΘM

t ) (4)

Eti
←−= fE

t (EP
ti , E

M
ti ; ΘE

t ) (5)

Yti
←−= fY

t (Dti,Xti, U
Y
ti ; Θt) = θ0t +Dtiθ

1
t +Xtiθ

2
t + UY

ti (6)

= θ0t +Dtiθ
1
t +Xtiθ

2
t + Etiθ

3
t + ǫti. (7)

The ←−= notation is formally defined in Section 3, but briefly communicates that the equation

contains information about counterfactual manipulations to the right hand side variables, and not

only information about what is passively observed in the data. For the sake of exposition we will

assume θ3t = 1, so that the potential outcome Equation 7 is:

Yti
←−= θ0t +Dtiθ

1
t +Xtiθ

2
t + Eti + ǫti. (7)

An implicit assumption in static models of causal effects is that dependent variables occur a

short but finite time interval after independent variables (Pearl (1993), Holland (1986)). To be

explicit about this assumption, we assume that at time t−6ǫ ∈ R
+ nature evaluates the arguments

of fP
t in Equation 1, applies fP

t to them under the parameterization ΘP
t , and sets the value of EP

ti

accordingly, where 0 < ǫ << 1. At time t− 5ǫ, nature then proceeds to do the same for Equation

2. Nature proceeds similarly until ultimately finishing at time t − ǫ by evaluating the arguments

of fY
t in Equation 7, applying fY

t to them under the parameterization Θt, and setting the value of

Yti accordingly. The DGP Dt is indexed by t ∈ N because all of the observed random variables in

Dt are observed at time t ∈ N, after Equations 1-7 have all been evaluated by nature.

Figure 1 shows four DGPs from {Dt}, omitting the unmeasured factors in U except the unob-

served factors in UY :
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Figure 1: Directed Acyclic Graphs of Four Data Generating Processes from {Dt}

Below I present three definitions of causal effects from this set of DGPs so that later issues

related to identification and prediction are not confused with issues of definition. Throughout

the analysis I distinguish between the model at time t,Mt, which is a set of relationships between

variables specified by the econometrician, and the DGP Dt, which is the set of relationships between

variables specified by nature (in this case, specified by structural equations 1-7). For the sake of

aiding interpretation, the ensuing discussion will consider an example in which we are trying to

learn about the effects of precipitation on crop yields. The features of the DGP will often be

interpreted as crop yields in year t and field i (Yti) being determined by rainfall (Dti), irrigated
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water (Xti), pesticide (EM
ti ), and soil quality as measured by its pH level (EP

ti ).

3 Defining Causal Effects as Changes from Interventions to the

DGP

Causal effects quantitatively characterize the change in the outcome variable that would result

from an intervention to the DGP. Such interventions to the DGP can be characterized by how they

would, or would not, impact covariates, especially unmeasured variables. In order to be precise

about which features of the DGP are changed, and which are not, under specific interventions, I

use Pearl (2009b)’s do-operator throughout the remainder of the analysis.

For example, an ideal manipulation is an intervention setting the value of Dti but making no

other change to the DGP (Spirtes et al. (2004), Eberhardt and Scheines (2007)). That is, an ideal

manipulation changes the process generating Dti but does not change the process generating either

covariate Xti or U
Y
ti . Such an intervention is written in potential outcome notation as Yti(d), which

can also be communicated in do-operator notation as the random variable Yti after the do(Dti = d)

operator has been applied to the DGP.8

The←−= notation in Equations 1-7 is meant to make explicit that these equations convey informa-

tion about the variation we would observe in the left hand side (lhs) variable if we were to intervene

to counterfactually vary the right hand side (rhs) variables in specific ways (Pearl (2009b)), often

specified by the do-operator. This counterfactual variation contrasts with the variation we actually

do observe in the lhs variable as the rhs variable varies in the data freely (ie, without intervention).9

A standard equation conveying information about the relationship between variables observed in

the factual world is symmetric with regards to the variables on its left and right hand sides.

A structural equation conveying information about the behavior of the lhs variable in counter-

factual worlds in which rhs variables are under control characterizes an asymmetric relationship

between the variables on the left and right hand sides of the equation.10 For example, structural

Equation 7 provides information about the counterfactual values of Yti if we were to control the

variables on the rhs, but makes no claim about how any of the variables on the rhs would behave

if we were to control the lhs variable Yti (Pearl (2009b), p 160). The ←−= notation together with

the parameters of the equation makes precise quantitative predictions about the DGP under in-

tervention. In the case of Equation 7, θ1t conveys information about the change in Yti we would

8White and Chalak (2009) and Chalak and White (2012) provide an extension to settable systems, where inter-
ventions and causal effects are defined in terms of those causal variables set to particular values by the intervention
and those allowed to respond according to their structural equation. Settable systems are especially useful for dealing
with background variables and beliefs, and appear to be promising for addressing the issues discussed in this analysis.

9Heckman (2005) makes this distinction in terms of setting variables rather than conditioning on them, and in
the Rubin Causal Model this distinction is made using potential outcomes notation to separate the causal theory
from the observed data (Holland (1988)). Chen and Pearl (2012) discuss some of the confusion that can arise without
such explicit notation.

10Some examples of the asymmetry of “directions of influence” (Strotz and Wold (1960)) include the fact that
symptoms do not cause disease (Pearl (2009a)), a child’s height does not cause her father’s height (Goldberger
(1991)), and rainfall determines crop yields but not the reverse.
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counterfactually observe under an intervention varying Dti while also keeping covariates Xti and

UY
ti constant.

The←−= notation in Equations 1-7 not only communicates information about how the lhs variable

in the DGP would respond to interventions to the rhs variables, but also how the lhs variable would

respond to interventions to additional variables. Recall that an exclusion restriction is a feature

of the DGP in which the lhs variable would not respond under intervention to a set of variables

other than those on the rhs of the equation. How many variables other than those on the rhs must

admit to an exclusion restriction in order for an equation to be structural?

Throughout this paper I use the symbol←−= to denote that an equation is structural in the sense

that given control over the specified observable (but not necessarily observed) variables on the rhs

of the equation, changes made to additional observable variables would provide no further change

to the outcome variable. This follows a standard definition of “structural equation” requiring that

all variables at a given level of observation not included on the right hand side satisfy an exclu-

sion restriction (Pearl (2009b), Definition 5.4.1). However, an alternative definition of “structural

equation” requires that an exclusion restriction must hold for only one additional variable not in-

cluded on the rhs (Angrist et al. (1996)). It is important to distinguish between these definitions

because the same intervention applied to two DGPs identical in all ways except for their definition

of “structural equation” could result in distinct counterfactual outcomes.

3.1 The Direct Effect: Changes from Interventions to Treatment and Covariates

Direct effects characterize the change in the outcome variable from a specific type of intervention

to the DGP:

Definition D1 (The Direct Effect): The individual-level causal effect of Dti on Yti, ∆
D1
ti , is the

change in Yti that would result from an intervention setting Dti to various values while setting

all other variables entering as arguments in fY to fixed values.

Direct effects are typically defined relative to a reference set of variables that are set to fixed values

by an intervention, and the values to which the reference variables are set (See Pearl (2001) for an

introduction.). In general, direct effects need not be invariant to interventions changing variables

outside that reference set. This direct effect, however, is invariant to changes to variables outside

the given reference set. This is because D1 defines direct effect relative to the reference set that

is the variables on the rhs of Equation 7, and the definition of structural equation adopted in

this paper indicates that all variables at the given level of observation not included on the rhs of

Equation 7 satisfy an exclusion restriction. In other words, because we are examining the DGP and

not a model, mediators outside the reference set can only be found at a finer level of observation

(A process which Holland (1988) notes always appears to be possible.).

The fundamental problem of causal inference is that we can only observe individuals in one

state of treatment at a given point in time (Holland (1986)). Thus causal inference, even entirely

in the past, is impossible without constructing unobserved counterfactuals. Since analysts are
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typically more comfortable constructing the average counterfactual for some population rather than

individual-level counterfactuals, it is useful to rewrite the individual-level effect in D1 in terms of

the Average Causal Effect (ACE) using the do operator. Equation 7 and definition D1 could be

interpreted as indicating that

Definition D1 (The Direct ACE): The Average Causal Effect of Dt on Yt is

Ei[∆
D1
ti (d, d′)] ≡ Ei[Yti|do(Dti = d′,Xti = xti, U

Y
ti = uti)] − Ei[Yti|do(Dti = d,Xti = xti, U

Y
ti = uti)]

= θ1t (d
′ − d).

3.2 The Total Effect: Changes from Interventions to Treatment Alone

A second useful definition of causal effect is the one adopted in the Rubin Causal Model:

Definition D2 (The Total Effect): The individual-level causal effect of Dti on Yti, ∆
D2
ti , is the

change in Yti that would result from an intervention setting Dti to various values without

changing any other feature of the DGP.

The analogous definition in Angrist et al. (1996) also requires that this effect is observable through

the existence of an intervention generating Yti(d) (ie, an intervention that setsDti while not affecting

the processes generating any of the covariates influencing Yti). Such an intervention corresponds

to the existence of an instrumental variable ZD
ti that enters as an argument of fD

t in Equation 2

but is excluded from being an argument in all other equations. This exclusion restriction for total

effects allows for Dti to be an argument in the selection Equations 3 and 4. Thus we might write

Yti(Dti)
←−= θ0t +Dtiθ

1
t +Xti(Dti)θ

2
t + UY

ti (Dti), (1*)

so that under definition D2 the individual-level causal effect of Dti on Yti can be decomposed into

the effect of Dti on Yti from definition D1 together with the change in Yti that would result from

the change in covariates induced by the change in Dti:

∆D2
ti (d, d′) ≡ Yti(d

′)− Yti(d) =
[
θ0t + d′θ1t +Xti(d

′)θ2t + UY
ti (d

′)
]
−

[
θ0t + dθ1t +Xti(d)θ

2
t + UY

ti (d)
]

= θ1t
[
d′ − d

]
+ θ2t

[
Xti(d

′)−Xti(d)
]
+

[
UY
ti (d

′)− UY
ti (d)

]
.

We might again define causal effects in terms of the ACE in response to the fundamental problem

of evaluation:

Definition D2 (The Total ACE): The Average Causal Effect of Dt on Yt is

Ei[∆
D2
ti (d, d′)] ≡ Ei[Yti|do(Dti = d′)]− Ei[Yti|do(Dti = d)].

3.3 The Econometric/Graphical Definition

Defining the vector

S ≡ (D,X,UY ),
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we can re-write Equation 7 more compactly as

Yti
←−= Yti(Sti).

Heckman (2008) and Pearl (2009b) (Definition 3.2.1) define the individual-level causal effect as

D3 The causal effect of manipulating s to s′ is ∆D3
ti (s, s′) ≡ Yti(s

′)− Yti(s) when s 6= s′.

Both the direct and total definitions of causal effect are nested within this definition. Let s =

(d, x, uY ). If s′ = (d′, x, uY ), then the causal effect in definition D3 corresponds to the direct

definition. If s′ = (d′, x(d′), uY (d′)), then the causal effect in D3 corresponds to the total definition.

Definitions of causal effects in addition to direct and total effects correspond to other possible

settings of or rules for determining s′ (Pearl (2014)).

3.4 Representing Interventions to the DGP

Both direct and total effects are defined in terms of the interventions to the DGP they charac-

terize. An exclusion restriction is necessary for defining the intervention resulting in total effects

(Angrist et al. (1996)), and an inclusion restriction is additionally required for defining direct ef-

fects. Let ZT
ti represent an intervention resulting in a change in Yti described by the total effect,

and ZD
ti represent an intervention resulting in a change in Yti described by the direct effect. Then

the exclusion restriction requires that ZT
ti has no influence on the process generating covariates (or

parents other than Dti) of Yti. The inclusion restriction requires that ZD
ti not only influences the

process generating covariates of Yti, but completely controls it.

These interventions represent specific changes to the DGPs described by Equations 1-7:

Original DGP After Direct Intervention After Total Intervention

EP
ti
←−= fP

t (UP
ti ; ΘP

t ) EP
ti
←−= fP

t (UP
ti ; ΘP

t ) EP
ti
←−= fP

t (UP
ti ; ΘP

t )

Dti
←−= fD

t (UD
ti ; ΘD

t ) Dti
←−= fD

t (ZD

ti
, UD

ti ; ΘD
t ) Dti

←−= fD
t (ZT

ti
, UD

ti ; ΘD
t )

Xti
←−= fX

t (Dti, U
X
ti ; ΘX

t ) Xti
←−= fX

t (ZD

ti
, Dti, U

X
ti ; ΘX

t ) Xti
←−= fX

t (Dti, U
X
ti ; ΘX

t )

EM
ti
←−= fM

t (Dti, U
M
ti ; ΘM

t ) EM
ti
←−= fM

t (Dti, U
M
ti ; ΘM

t ) EM
ti
←−= fM

t (Dti, U
M
ti ; ΘM

t )

Eti
←−= fE

t (EP
ti , E

M
ti ; ΘE

t ) Eti
←−= fE

t (ZD

ti
, EP

ti , E
M
ti ; ΘE

t ) Eti
←−= fE

t (EP
ti , E

M
ti ; ΘE

t )

Yti
←−= fY

t (Dti, Xti, U
Y
ti ; Θt) Yti

←−= fY
t (Dti, Xti, U

Y
ti ; Θt) Yti

←−= fY
t (Dti, Xti, U

Y
ti ; Θt)

resulting in the altered DGPs corresponding with the definition of causal effect in Pearl (2009b)
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(Definition 3.2.1):

Original DGP After Direct Intervention After Total Intervention

EP
ti
←−= fP

t (UP
ti ; ΘP

t ) EP
ti
←−= fP

t (UP
ti ; ΘP

t ) EP
ti
←−= fP

t (UP
ti ; ΘP

t )

Dti
←−= fD

t (UD
ti ; ΘD

t ) Dti
←−= d Dti

←−= d

Xti
←−= fX

t (Dti, U
X
ti ; ΘX

t ) Xti
←−= x Xti

←−= fX
t (Dti, U

X
ti ; ΘX

t )

EM
ti
←−= fM

t (Dti, U
M
ti ; ΘM

t ) EM
ti
←−= fM

t (Dti, U
M
ti ; ΘM

t ) EM
ti
←−= fM

t (Dti, U
M
ti ; ΘM

t )

Eti
←−= fE

t (EP
ti , E

M
ti ; ΘE

t ) Eti
←−= e Eti

←−= fE
t (EP

ti , E
M
ti ; ΘE

t )

Yti
←−= fY

t (Dti, Xti, U
Y
ti ; Θt) Yti

←−= fY
t (Dti, Xti, U

Y
ti ; Θt) Yti

←−= fY
t (Dti, Xti, U

Y
ti ; Θt)

Figure 2 shows the new DGP after interventions ZD
ti or ZT

ti are applied to DGP DIV
t :

b
EP

t

b

EM
t

b
Et

b
Dt

b

ZD
t

b Yt

b
Xt

t time

(a) Intervention ZD
t to DIV

t Described by Direct Effect

b
EP

t

b

EM
t

b
Et

b
Dt

b

ZT
t

b Yt

b
Xt

t time

(b) Intervention ZT
t to DIV

t Described by Total Effect

Figure 2: Directed Acyclic Graphs of Two Interventions to the DGP DIV
t

An implicit assumption about both the direct and total interventions is that they do not change

the process generating the unobservable component ǫti of the unmeasured covariates UY
ti . This is

a crucial assumption. Since defining a feature of a DGP and observing that feature are separate

tasks, the inability to observe a defined feature does not negate the operationality of the definition

(See p 160 of Pearl (2009b) or Heckman and Vytlacil (2007).). But it does appear difficult for

a researcher to even theorize about an intervention holding all else constant (Freedman (1987),

Holland (1988), Rogosa (1987)) or not influencing all else in any way (Eberhardt and Scheines

(2007)) without knowing what variables are included in “all else.”11

11Some of the criticisms in the cited papers could also be seen as arguments that when economists “structurally
estimate” a model, meaning that they estimate a model Mt whose equations are assumed to be invariant in some way,
it appears incredibly difficult to judge whether such invariance conditions characterize the real world (ie, the DGP Dt).
The use of non-random holdout samples is a promising approach for judging whether the invariance hypothesized by
a researcher’s modelMt corresponds with that of the DGP Dt (Todd and Wolpin (2006), Keane and Wolpin (2007),
Schorfheide and Wolpin (2013)).
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Table 1 describes several interventions to the DGP in terms of both potential outcome no-

tation (ie, the RCM) and structural equations notation (ie, the SCM). The recent literature has

studied the identification of a plethora of such causal effects, where each particular causal effect

is defined in terms of which covariates the intervention holds fixed or allows to respond to other

variables in the DGP (Pearl (2001), Pearl (2014), Hafeman and VanderWeele (2011), Huber (2013),

Flores and Flores-Lagunes (2010)).

Table 1: Alternative Notation for Identical Interventions to the DGP Dt

Directed Acyclic Graphs/ Econometric Potential Outcomes/ IV/Regression Coefficients
Structural Causal Model Model Rubin Causal Model Under Appropriate Assumptions

E[Yt|Dt = d] E[Yt|St = s] E[Yt|Dt = d] βtd+ ǫ

E[Yt|do(Dt = d′)]− E[Yt(s
′)]− E[Yt(d

′)]− βt(d
′ − d)

E[Yt|do(Dt = d)] E[Yt(s)] E[Yt(d)] in RCM

E[Yt|do(Dt = d′, Xt = mx)]− E[Yt(s
′)]− E[Yt(d

′,mx)]−
E[Yt|do(Dt = d,Xt = mx)] E[Yt(s)] E[Yt(d,mx)]

E[Yt|do(Dt = d′, Xt = fX
t (d, UX

t ; ΘX
t ))]− E[Yt(s

′)]− E[Yt(d
′,mxt(d))]−

E[Yt|do(Dt = d,Xt = fX
t (d, UX

t ; ΘX
t ))] E[Yt(s)] E[Yt(d,mxt(d))]

E[Yt|do(Dt = d′, Xt = mx, U
Y
t = mu)]− E[Yt(s

′)]− E[Yt(d
′,mx,mu)]− βt(d

′ − d)
E[Yt|do(Dt = d,Xt = mx, U

Y
t = mu)] E[Yt(s)] E[Yt(d,mx,mu)] in SCM

4 Description of the Past: Identification of Causal Effects

To facilitate interpretation, the ensuing analysis will at times discuss identification of causal

effects of the DGP specified in the structural Equations 1-7 in terms of the causal effects of precipi-

tation.12 Suppose first that the researcher is interested in understanding the effects of precipitation

on crop yields, and has data on crop yields for farmers i = 1, . . . , N (Yti in Equation 7) at times

t0 and t, with Y ∈ R
N × R

N . The researcher might be interested in identifying the effect of

precipitation (Dti), which is observed, on crop yields. The social scientist observes another causal

variable in the DGP, which is a measure of the quantity of irrigated water applied to the crops

(Xti), but does not measure several other causal variables, such as the quantity of pesticide applied

to the crops (potentially observable at the given level of measurement) or the quality of the soil in

which the crops were grown (assumed to be unobservable at the given level of measurement). The

total effect of these unobserved causal variables is labeled as UY
ti . To re-iterate, we will denote the

current moment in time t∗ ∈ N, and we will consider DGPs indexed to three additional points in

time:

t0 < t < t∗ < t′.

12Deuchert and Huber (2014) present a related discussion of timing and identification in a setting of causal effects
of educational attainment and veteran status on health.
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We interpret t0 as the time at which treatment was assigned, t as the time at which observed

variables were measured, and t′ being some point in time in the future.

Given the dearth of attention paid to selection into covariates, here we assume selection into

treatment is not a problem by assuming that treatment is randomly assigned:

Random Assignment (RA): The variable Dti is randomly allocated in the sample. Specifically,

Dti is an iid random variable that follows the triangle distribution with lower limit −1, upper

limit 1, and mode 0.

Thinking in terms of our rainfall and crop yield example, we can think of this assumption applying

to circumstances in which annual rainfall is randomly allocated.

In this scenario a multitude of identification strategies have been developed to identify a variety

of causal effects in addition to those defined in Section 3, a short group of which includes Pearl

(2001), Chalak and White (2011), and Huber (2013). In this analysis we consider whether the

parameters from three regression equations estimated via OLS identify any of the causal effects

defined in Section 3, where H,K, and L are statistical error terms:13

Yti = α0
t +Dtiα

1
t +Hti, (8)

Yti = β0
t +Dtiβ

1
t +Xtiβ

2
t +Kti, (9)

Yti = γ0t +Dtiγ
1
t +Xt0iγ

2
t + Lti. (10)

Equation 9 can be justified as the classical regression model with a few additional assumptions

(Goldberger (1991), Chapters 15 and 16). And when it is suspected that Dti is an argument in

selection Equation 3, Angrist and Pischke (2009) recommend estimating Equation 8 (p 66) and

Duflo et al. (2007) (p 3949) and Rosenbaum (1984) recommend estimating Equation 10.

In Appendix A it is shown that when (Dti,Xti, Eti) are excluded from f ǫ
ti,

α̂
1,OLS
t

p
−→ θ1t +

E [DtXt]

E [DtDt]
θ2t +

E [DtEt]

E [DtDt]
, (11)

β̂
1,OLS
t

p
−→ θ1t +

E[XtXt] E[DtEt] − E[DtXt] E[XtEt]

E[DtDt] E[XtXt] − E[DtXt] E[XtDt]
, and (12)

γ̂
1,OLS
t

p
−→ θ1t +

E[Xt0Xt0 ] E[DtXt] − E[DtXt0 ] E[Xt0Xt]

E[DtDt] E[Xt0Xt0 ] − E[DtXt0 ] E[Xt0Dt]
θ2t (13)

+
E[Xt0Xt0 ] E[DtEt] − E[DtXt0 ] E[Xt0Et]

E[DtDt] E[Xt0Xt0 ] − E[DtXt0 ] E[Xt0Dt]
.

13I focus on OLS estimators applied to a randomized treatment because I want to focus on the issues raised by
selection into covariates in isolation from those raised by selection into treatment. I show in Appendix A that the
OLS estimators of α1

t , β
1
t , and γ1

t converge in probability to the analogous 2SLS estimators when there is perfect
compliance between the instrument and treatment. I also provide simulation results in Appendix C showing that the
analysis generalizes immediately to identification schemes using instrumental variables estimators to overcome the
distinct issue of selection into treatment.
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Since Dti has mean zero, the following orthogonality conditions result from RA:

Orthogonality DX-t0: E[DtXt0 ] = 0

Orthogonality DE-t0: E[DtEt0 ] = 0

Remarkably, one of the orthogonality conditions induced by randomization (DX-t0) implies that

α̂
1,OLS
t

p
−→ γ̂

1,OLS
t as N →∞. Thus Equations 11-13 can be rewritten as:

α̂
1,OLS
t

p
−→ γ̂

1,OLS
t

p
−→ θ1t +

E [DtXt]

E [DtDt]
θ2t +

E [DtEt]

E [DtDt]
, and (14)

β̂
1,OLS
t

p
−→ θ1t +

E[XtXt] E[DtEt] − E[DtXt] E[XtEt]

E[DtDt] E[XtXt] − E[DtXt] E[XtDt]
. (15)

Not only does α1,OLS
t convey the change in the outcome Yti for each unit of change in Dti we

observe in the data,

E[Yti|Dti = d+ 1]− E[Yti|Dti = d] = E[θ0t +Dtiθ
1
t +Xtiθ

3
t +Eti |Dti = d+ 1]

− E[θ0t +Dtiθ
1
t +Xtiθ

2
t +Eti |Dti = d]

= (d+ 1)θ1t + E[Xtiθ
2
t |Dti = d+ 1] + E[Eti |Dti = d+ 1] (16)

− dθ1t − E[Xtiθ
2
t |Dti = d] + E[Eti|Dti = d]

= θ1t +
E [DtXt]

E [DtDt]
θ2t +

E [DtEt]

E [DtDt]
(17)

= plim α̂
1,OLS
t ,

but Random Assignment (RA) implies that it also identifies the change in Yti that would result if

we were to counterfactually set treatment Dti one unit higher. Specifically, RA implies that the

average covariate for the subpopulation with Dti observed to be d is equal to the average covariate

when Dti is set to d for the population:14

E[Eti|Dti = d] = E[Eti|do(Dti = d)], and (18)

E[Xti|Dti = d] = E[Xti|do(Dti = d)]. (19)

Equations 18 and 19 are a restatement of the independence assumption in Holland (1986) using the

14Equations 18 and 19 do not ensure that the treated and nontreated groups are equal in all aspects apart from the
treatment status (Heckman (1996)). The related assumptions in the program evaluation hold because Eti in Equation
7 is a different random variable than the error terms in the program evaluation literature (Imbens and Wooldridge
(2009), Blundell and Dias (2009), Angrist et al. (1996)). Eti in Equation 7 is also a different random variable than the
error terms in the Conditional Expectation Functions (CEFs) discussed in Goldberger (1991) and Angrist and Pischke
(2009).
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do operator, and are the link by which conditioning on treatment status identifies the total effect:

E[Yti|Dti = d+ 1]− E[Yti|Dti = d] = E[θ0t +Dtiθ
1
t +Xtiθ

3
t + Eti |Dti = d+ 1]

− E[θ0t +Dtiθ
1
t +Xtiθ

2
t + Eti |Dti = d]

= (d+ 1)θ1t + E[Xtiθ
2
t |Dti = d+ 1] + E[Eti |Dti = d+ 1]

− dθ1t − E[Xtiθ
2
t |Dti = d]− E[Eti|Dti = d]

= θ1t + E[Xtiθ
2
t |do(Dti = d+ 1)] + E[Eti|do(Dti = d+ 1)]

− E[Xtiθ
2
t |do(Dti = d)]− E[Eti|do(Dti = d)]

= E[Yti|do(Dti = d+ 1)] − E[Yti|do(Dti = 0)]. (20)

Since Dti is randomly assigned E[Yti|Dti = d] = E[Yti|Dti = d, Xt0i = x], so that the preceding

arguments also show that

plim γ̂
1,OLS
t = plim α̂

1,OLS
t = Ei[Yti|do(Dti = d+ 1)]− Ei[Yti|do(Dti = d)] ≡ Ei[∆

D2
ti (d, d+ 1)].

Thus α̂1,OLS
t and γ̂

1,OLS
t identify the total effect of treatment on the outcome variable for our DGP.

In contrast, one can immediately see from Equations 14 and 15 that the orthogonality condi-

tions DX-t0 and DE-t0 resulting from randomization are not sufficient for any of the regression

coefficients in Equations 8-10 to identify the direct effect of treatment θ1t . This point has received

considerable attention in the literature (Deaton (2010), Rosenzweig and Wolpin (2000), Keane

(2010), White and Chalak (2013), Heckman (1997), Leamer (2010), Heckman and Smith (1995)).

Consider additional orthogonality conditions at the time of measurement:

Orthogonality DX-t E[DtXt] = 0

Orthogonality DE-t E[DtEt] = 0

Orthogonality XE-t E[XtEt] = 0.

If DE-t and XE-t hold, then β̂
1,OLS
t will converge in probability to the direct effect θ1t . Note

again, however, that randomization is not sufficient to ensure these orthogonality conditions, as it

is possible that unobserved covariates Eti are chosen in response either to treatment or observed

covariates, which may themselves be chosen in response to treatment.

4.1 The Identification Tradeoff Favoring Total Effects

Recalling that t0 < t < t∗ < t′ ∈ N, let It∗(∆t) be the subset of DGPs in {Dt} for which

causal effects of type ∆t are identified at the present time t∗ by one of the OLS estimators.15 The

preceding analysis showed that total effects are identified by one of the OLS estimators for all

15I again stress that there are many other identification strategies for identifying various effects like the direct and
total effects as defined in this paper, as well as others like the natural direct effect. See Chalak and White (2011),
Flores and Flores-Lagunes (2010), Mattei and Mealli (2011), Huber (2013), and others.
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DGPs, but that an OLS estimator can only identify direct effects when orthogonality conditions

DE-t and XE-t hold. Given the structure of our DGPs, this happens when neither Dti nor Xti

enter as arguments in fM
t or fE

t , and EP
ti does not enter as an argument in fX

t . That is:

It∗(∆
D1
t ) =

{
Dt

∣∣∣ EP
ti 6∈ fX

t ,

Dti, 6∈ fM
t , Xti 6∈ fM

t ,

Dti 6∈ fE
t , Xti 6∈ fE

t

}
, while

It∗(∆
D2
t ) =

{
Dt

}
.

Since any element DD1
t ∈ It∗(∆

D1
t ) is by definition also an element of It∗(∆

D2
t ), it follows that

It∗(∆
D1
t ) ⊆ It∗(∆

D2
t ). In contrast, there exist DGPs DD2

t ∈ It∗(∆
D2
t ) for which Dti is an argument

in fM
t , such as the DGPs DIII

t or DIV
t specified in Section 9. Since these DGPs violate Exclusion II,

DIII
t 6∈ It∗(∆

D1
t ) and DIV

t 6∈ It∗(∆
D1
t ), and hence DD2

t 6⊂ It∗(∆
D1
t ). Thus we have the identification

tradeoff favoring total effects: It∗(∆
D1
t ) is a proper subset of It∗(∆

D2
t ), or

It∗(∆
D1
t ) ⊂ It∗(∆

D2
t ).

5 Generalization: Prediction with Causal Effects

Suppose that a social scientist has successfully identified a causal effect of the DGP Dt. Why

would anyone be interested in such information? If we follow Zellner (2007) to distinguish between

two key steps of science being (1) Description of the past, and (2) Generalization/Prediction of

future (or as of yet unobserved) experience, social scientists’ interest in causal effects is typically

justified in terms of their use for Prediction.16

How might a causal effect identified in past data be used to predict future experience? We again

consider this question in terms of our running example of rainfall (D) and crop yields (Y ). Figure

3 shows an example DGP determining Y at time t (Dt), along with its successor DGP determining

Y at time t′ > t (Dt′). If a scientist at the current moment in time (t∗) knows the value of a causal

effect identified from data in the past (at time t), what assumptions must hold in order for her to

accurately predict how the outcome variable will change if an intervention manipulates treatment

in the future (at time t′)?

16Zellner himself follows Karl Pearson, Harold Jeffreys, and others in this distinction. See Footnote 1 for prominent
researchers citing Prediction as a justification for interest in causal effects.
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A change in the environmental regulation of pesticide use between times t and t′ and the resulting realizations of Dt and Dt′

EP = Soil Quality

EM = Pesticide
X = Irrigated Water

D = Rainfall
Y = Crop Yield

b
EP

t

b
EM

t

b
Et

b
Dt

b

ZT
t

b Yt

b
Xt

b
EP

t′

b
EM

t′

b
Et′

b

Dt′

b

ZT
t′

b Yt′

b

Xt′

t t∗ t′ time

Figure 3: An example in which predictions of the future effect of Dt′ on Yt′ (ie, of changes to Yt′ from the intervention ZT
t′ ) will be biased

when constructed at current time t∗ using total effects identified from past data (ie, from data collected at time t)
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5.1 Prediction with Direct Effects

Letting Πs(·|t) denote scientist s’s prediction at time t, suppose that the following three as-

sumptions are true:

Predict I Scientist s knows the functional form of the outcome equation and its parameterization,

and also knows that these are invariant over contexts (time and environment):

fY
t′ (·; Θt′) = fY

t (·; Θt).

Predict II Scientist s knows the future direct effects of covariates, θ0t′ θ2t′ , and θEt′ = 1.

Predict III Scientist s knows how covariates will respond to treatment,

fX
t′ (Dt′ , ·; Θ

X
t′ ), fM

t′ (Dt′ , ·; Θ
M
t′ ), and fE

t′ (·; Θ
E
t′ ).

Predict II allows scientist s to construct the predictions

Πs(θ
0
t′ |t

∗), Πs(θ
2
t′ |t

∗), and Πs(θ
E
t′ |t

∗) = 1, and Predict III allows scientist s to construct the

predictions Πs(Xt′i(d)|t
∗) and Πs(Et′i(d)|t

∗). Now if scientist s possesses an estimate of the

direct effect of treatment at past time t, θ̂1t , Predict I instructs scientist s on how to combine these

predictions with the direct effect of treatment in order to predict the total effect on the outcome

variable at time t′ in the future:

Πs

(
Ei[Yt′i(d′) − Yt′i(d)] | t

∗
)

=Ei

[
Πs(θ

0
t′ |t

∗) + d′ θ̂1t +Πs(Xt′i(d′)|t
∗)Πs(θ

2
t′ |t

∗) +Πs(Et′i(d′)|t
∗)
]

(Construction)

− Ei

[
Πs(θ

0
t′ |t

∗) + d θ̂1t +Πs(Xt′i(d)|t
∗)Πs(θ

2
t′ |t

∗) +Πs(Et′i(d)|t
∗)
]

=Ei

[
Πs(θ

0
t′ |t

∗) + d′ θ1t′ +Πs(Xt′i(d′)|t
∗)Πs(θ

2
t′ |t

∗) +Πs(Et′i(d′)|t
∗)
]

− Ei

[
Πs(θ

0
t′ |t

∗) + d θ1t′ +Πs(Xt′i(d)|t
∗)Πs(θ

2
t′ |t

∗) +Πs(Et′i(d)|t
∗)
]

(I+θ̂1t )

=Ei

[
Πs(θ

0
t′ |t

∗) + d′ θ1t′ +Xt′i(d′)Πs(θ
2
t′ |t

∗) + Et′i(d′)

]

− Ei

[
Πs(θ

0
t′ |t

∗) + d θ1t′ +Xt′i(d)Πs(θ
2
t′ |t

∗) + Et′i(d)

]
(III)

= Ei

[
θ0t′ + d′ θ1t′ + θ2t′Xt′i(d′) + Et′i(d′)

]

− Ei

[
θ0t′ + d θ1t′ + θ2t′Xt′i(d) + Et′i(d)

]
(II)

= Ei[Yt′i(d′) − Yt′i(d)], (I)

where each equation is labeled by the assumption by which it is rendered an accurate prediction.

The derivation of Πs is analogous to the transport formula in Bareinboim and Pearl (2013a).
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5.2 Prediction with Total Effects

Now suppose that scientist s possesses an estimate of the total effect of treatment Ei[△̂
D2
t ],

obtained from data in the past at time t. In what circumstances will this causal effect be useful

at the current time t∗ for predicting how the outcome variable will change in response to a future

intervention manipulating treatment from d to d′?

Total effects are useful under additional assumptions requiring that the behavior of covariates

does not change between times t and t′. In addition to Predict I, II, and III, assume that at time

t∗:

Predict IV Scientist s not only knows the direct effects of covariates in the future, but also knows

that they will be the same as they were in the past, θ0t′ = θ0t , θ2t′ = θ1t , and θEt′ = θEt = 1.

Predict V Scientist s not only knows how covariates will respond to treatment in the fu-

ture, but also knows these equations will be the same as in the past, fX
t′ (Dt′ , ·; Θ

X
t′ ) =

fX
t (Dt, ·; Θ

X
t ), fM

t′ (Dt′ , ·; Θ
M
t′ ) = fM

t (Dt, ·; Θ
M
t ), and fE

t′ (·; Θ
E
t′ ) = fE

t (·; ΘE
t ).

Thus the total effect identified in data from the past time t predicts the change from the future

intervention:

Πs(Ei[Yt′i(d′) − Yt′i(d)]|t
∗) = Ei[△̂

D2
t ] (Construction)

≡ Ei[Yti(d′) − Yti(d)] (Def D2)

= Ei

{
θ0t + d′ θ1t +Xti(d′)θ

2
t +Eti(d′) −

[
θ0t + d θ1t +Xti(d)θ

2
t + Eti(d)

] }
(Dt)

= Ei

{
θ0t + d′ θ1t +Xt′i(d′)θ

2
t + Et′i(d′) −

[
θ0t + d θ1t +Xt′i(d)θ

2
t + Et′i(d)

] }
(V)

= Ei

{
θ0t′ + d′ θ1t′ +Xt′i(d′)θ

2
t′ + Et′i(d′) −

[
θ0t′ + d θ1t′ +Xt′i(d)θ

2
t′ + Et′i(d)

] }
(IV)

= Ei[Yt′i(d′) − Yt′i(d)]. (I)

Because they do not recover θ1t , total effects are used differently to construct the predictions than

direct effects.

5.3 The Prediction Tradeoff Favoring Direct Effects

Predict IV and V cannot be invoked without invoking Predict II and III, which themselves are

assumptions about knowledge of direct effects of covariates through the Θ’s parameterizing the
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selection equations. Predict I must also be invoked for prediction with total effects. Thus if denote

by Pt∗(∆t′) the subset of DGPs in {Dt} for which causal effects of type ∆t can be used at the

present time t∗ to make accurate predictions about changes from interventions at future time t′,

we established above that

Pt∗(∆
D1
t ) =

{
Dt′

∣∣∣ Predict I, II, III

}
, while

Pt∗(∆
D2
t ) =

{
Dt′

∣∣∣ Predict I, II, III, IV, V

}
.

Since Predict II and III are nested in Predict IV and V, Predict IV and V hold for a smaller subset

of DGPs for which Predict II and III hold. This results in the prediction tradeoff:

Pt∗(∆
D2
t′ ) ⊂ Pt∗(∆

D1
t′ ).

Because it requires the stronger assumptions about the invariance of the behavior of covariates,

prediction with total effects rules out circumstances of central interest in social systems that are

ubiquitous. Returning to Figure 3 and our example DGP of rainfall and crop yields, we can see that

any changes made to the behavior of covariates between times t and t′ biases predictions made with

total effects as constructed above. In Figure 3 one possibility is raised, which is that regulations

pertaining to the use of pesticides changes between time t and t′ due to human agency.

Electrons do not assemble and collectively decide to change their behavior. Nor do trees

(Heckman (1997), Deaton (2010)). In contrast, one could easily imagine that between time t

and t∗, say over the course of one year, a group of humans might have collectively decided to allow

farmers to use certain productivity-enhancing pesticides on their crops. If farmers will in the future

use pesticide to improve crop yield in years with little rain, but in the past did not do so because

of regulation, now the context has changed between time t and t′.

Figure 3 also helps to illustrate why direct effects are so useful in social systems. A scientist who

understands how the behavior of covariates has changed (in this case, through changes to fM as

relayed in Predict III) can still make an accurate prediction of outcomes after future interventions

when they possess knowledge of direct effects. That is, as long as the scientist’s prediction is

accurate (Πs(Et′i(d)|t
∗) = Et′i(d)), they can move from line I+θ̂1t to line III in Section 5.1.

One could imagine many additional scenarios in which the behavior of covariates changes be-

tween times t and t′. The effectiveness of pesticides might improve between times t and t′, violating

Predict IV with θEt 6= θEt′ (again through human agency through research and development).17

Predict IV might also be violated by the development of new hybrid crops that are more efficient,

so that θ1t 6= θ1t′ . Alternatively, if water policy changes between times t and t′, Predict V will be

17While plants and animals might change their behavior over time, the time span is so long relative to those of
interest for questions addressed here that it is appropriate to assume these behaviors do not change. This stands
in stark contrast to the behaviors of humans, especially in terms of collective decisions and/or their impacts on
individual-level decisions.
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violated as fX
t 6= fX

t′ .

The point is that while assumptions similar to Predict IV and V may hold for physical systems,

such assumptions are not likely to hold in social systems due to human agency. Choices of human

beings make changes to the DGP ubiquitous in social systems, which therefore create any number

of violations of assumptions about the temporal invariance of the process generating covariates.

Total effects that require such strong restrictions on human behavior are unlikely to be useful for

prediction in many social settings. Implications for the literature are discussed in the next section.

6 Implications for the Literature

6.1 An Example: Returns to Schooling

A tremendous amount of time, energy, and resources have been devoted to estimating the

causal effects of educational attainment. To be explicit, the key reason for this focus is that policy

makers and citizens might intervene to the DGP to encourage or discourage students from finishing

high school and/or college. If we knew the changes from an intervention manipulating educational

attainment D, it would help us to decide how much to spend as a society to implement that

intervention.

Identifying causal effects of educational attainment is complicated by selection into treatment

in response to an unobserved covariate (Card (2001), Belzil (2007)). Although overcoming selection

into treatment is a non-trivial task (Angrist and Krueger (1991), Aliprantis (2012), Barua and Lang

(2009)), suppose for the moment that social scientists had found empirical methods overcoming

the unobserved nature of ability, and had identified the returns to schooling based on samples in

which attainment were randomly assigned.

Would the total effects of education on earnings identified in past data be useful for predicting

how wages would change in the future under interventions to increase educational attainment?

Many mediators, or malleable covariates like EM
t , could themselves respond to the assignment of

treatment. Marginal Treatment Effects (MTEs) and Local Average Treatment Effects (LATEs)

of educational attainment estimated in the literature like in Carneiro et al. (2011), Oreopoulos

(2006a), and Oreopoulos (2006b) may reflect the direct effect of educational attainment, but due

to selection into covariates may also reflect direct effects from any of the following causal variables:
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Table 2: Covariates Whose Behavior Determines the Total Effect

Evidence of Selection into Covariate Evidence of Effect of
in Response to Ed Attainment Covariate on Wages

Covariate Study Study

On-the-Job Training Altonji and Blank (1999) Brown (1989)

Job Training Program – Lee (2009)

Self-Employment Blanchflower (2000) Hamilton (2000)

Vocational Education Bishop and Mane (2004) Meer (2007)

Criminal Behavior Jacob and Lefgren (2003) Nagin and Waldfogel (1998)

Arrest Grogger (1995) Bushway (2004)

Incarceration Lochner and Moretti (2004) Kling (2006), Western et al. (2001)

Fertility McCrary and Royer (2011) Simonsen and Skipper (2006)

Household Formation Nielsen and Svarer (2009) Gemici (2011)

Geographic Location Costa and Kahn (2000) Baum-Snow and Pavan (2013), Black et al. (2009)

Military Service Small and Rosenbaum (2008) Angrist (1990)

Health (smoking) Currie and Moretti (2003) Auld (2005)

Working While in School – Light (2001)

Neighborhood Quality – Rosenbaum (1995), Aliprantis and Richter (2013)

This example helps to illustrate why total effects can be so weakly invariant in social settings.

If the process generating the covariate were to change over time for any of these covariates, the

total effects of attainment estimated in the literature would give biased predictions. Figure 4

displays DAGs of the total effects of educational attainment on wages at times t and t′. Suppose

that at time t companies only provided on-the-job training to employees with certain levels of

educational attainment. If this policy were to change between times t and t′ so that at time t′

companies provided training to all employees, regardless of their educational attainment level, then

total effects would change.18

Accurate prediction with total effects requires there are not changes over time to the DGP

related to any of the direct effects contributing to the total effect. It is difficult to imagine that the

social processes related to each of the above mediators do not change in important ways over time.

18Similar examples can be found in Cartwright and Hardie (2012), who distinguish the evidence necessary to make
accurate statements about the past from the evidence necessary to make accurate statements about the future. This
can also be thought of as an example of how super exogeneity assumptions need not follow from weak exogeneity
(Engle et al. (1983), Hendry and Richard (1982)).
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A change in the direct effect of educational attainment on on-the-job training

between times t and t′ and the resulting realizations of Dt and Dt′

M1 = On-the-Job Training

M2 = Job Training Program

M3 = Self-Employment

M4 = Vocational Education

M5 = Criminal Behavior

M6 = Arrest

M7 = Incarceration

M8 = Fertility

M9 = Household Formation

M10 = Geographic Location

M11 = Military Service

M12 = Health (smoking)

M13 = Working While in School

M14 = Neighborhood Quality

Y = Wages

b

ZT
t

b
Dt

b
M1t

b
M2t

...

...

b
M13t

b
M14t

b
Yt

b

ZT
t′

b
Dt′

b
M1t′

b
M2t′

...

...

b
M13t′

b
M14t′

b
Yt′

t t∗ t′ time

Figure 4: An example in which predictions of the future effect of Dt′ on Yt′ (ie, of changes to Yt′ from the intervention ZT
t′ ) will be biased

when constructed at current time t∗ using total effects identified from past data (ie, from data collected at time t)
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7 Conclusion

This paper studied a simple dynamic extension to the canonical static treatment effect frame-

work. Treatment always influences the outcome variable in combination with other variables, which

I refer to as covariates. I showed that there is a tradeoff between how easy it is to identify a causal

effect in past data and its usefulness for predicting the future because covariates can respond even

to a randomized treatment, and the behavior of covariates can change over time. I used the effects

of precipitation on crop yields and of schooling on wages as examples to discuss why human agency

is likely to change the behavior of covariates over time in many social systems.
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8 Appendix A: Derivation of OLS and 2SLS Estimators

8.1 Notation for Matrix Algebra

For the sake of exposition, assume for these derivations that the constant term in the structural

outcome equation θ0 = 0, and that the regressions are specified without constants. Additionally for

the sake of exposition, recall that at the given level of measurement ǫti ∼ iid f ǫ
ti, where f

ǫ
ti is simply

the distribution of a random variable with finite variance, and no observable variables enter as

argument of f ǫ
ti at the given level of measurement. Since ǫti is mean zero, has finite variance, and is

independent of all observable variables, we can ignore it when taking expectations and constructing

estimators. The ensuing analysis therefore considers DGPs omitting this variable.

Remember that Dt represents the N × 1 vector of observations of Dti. We also have N obser-

vations of X at both the time of assignment and the time of measurement, which were labeled as

Xt0 and X t. Define the following N × 2 vectors

W t0 ≡ [Dt,Xt0 ] , J t0 ≡ [Zt,X t0 ]

W t ≡ [Dt,Xt] , and J t ≡ [Zt,Xt] .

Defining the N × 1 and 2× 1 vectors

Y t ≡




Yt1

...

YtN


 , Et ≡




Et1

...

EtN


 , θt ≡

[
θ1t

θ2t

]
,

it is possible to write the structural potential outcome Equation 7 in Section 3,

Yti
←−= Dtiθ

1
t +Xtiθ

2
t + Eti, (1)

as

Y t
←−= W tθt +Et.

Recall the regression Equations 8-10:

Y t = Dtα
1
t +H t (5)

Y t = W tβt +Kt (6)

Y t = W t0γt +Lt (7)

32



8.2 Derivation of OLS Estimators

A little matrix algebra shows that:

α̂
1,OLS
t = (D′

tDt)
−1[D′

tY t]

= (D′

tDt)
−1[D′

t(Dtθ
1
t +Xtθ

2
t +Et)]

= θ1t +
D′

tXt

D′

tDt

θ2t +
D′

tEt

D′

tDt

.

Rewriting a ratio of the dot products of two N × 1 vectors A and B as

A′B

B′B
=

1
N

∑N
i=1AiBi

1
N

∑N
i=1BiBi

(21)

the Weak Law of Large Numbers implies that as N goes to infinity,

α̂
1,OLS
t

p
−→ θ1t +

E [DtXt]

E [DtDt]
θ2t +

E [DtEt]

E [DtDt]

as long as the above means are all finite.

Similarly,

β̂
OLS

t = (W ′

tW t)
−1[W ′

tY t]

= (W ′

tW t)
−1[W ′

t(W tθt +Et)]

= θt + (W ′

tW t)
−1[W ′

tEt]

= θt +

[
D′

tDt D′

tX t

X ′

tDt X ′

tXt

]
−1




[
Dt1 · · · DtN

Xt1 · · · XtN

]



Et1

...

EtN







= θt +
1

(D′

tDt)(X
′

tXt)− (D′

tXt)(X
′

tDt)

[
X ′

tXt −D′

tXt

−X ′

tDt D′

tDt

][
D′

tEt

X ′

tEt

]

=




θ1t

θ2t


+




(X
′

tXt)(D
′

tEt)−(D
′

tXt)(X
′

tEt)

(D
′

tDt)(X
′

tXt)−(D
′

tXt)(X
′

tDt)

−(X
′

tDt)(D
′

tEt)+(D
′

tDt)(X
′

tEt)

(D
′

tDt)(X
′

tXt)−(D
′

tXt)(X
′

tDt)


 .

Recalling Equation 21, as N goes to infinity

β̂
1,OLS
t

p
−→ θ1t +

E[XtXt] E[DtEt] − E[DtXt] E[XtEt]

E[DtDt] E[XtXt] − E[DtXt] E[XtDt]

33



if the above means are finite.

And finally,

γ̂OLS
t = (W ′

t0
W t0)

−1[W ′

t0
Y t]

= (W ′

t0
W t0)

−1[W ′

t0
(W tθt +Et)]

=
1

(D′

t
Dt)(X ′

t0
Xt0

)− (D′

t
Xt0

)(X ′

t0
Dt)

[

X
′

t0
Xt0

−D
′

t
Xt0

−X
′

t0
Dt D

′

tDt

][

D
′

t
Dtθ

1
t
+D

′

t
Xtθ

2
t
+D

′

t
Et

X
′

t0
Dtθ

1
t
+X

′

t0
Xtθ

2
t
+X

′

t0
Et

]

=




(X
′

t0
Xt0

)(D
′

t
Dt)θ

1

t
+(X

′

t0
Xt0

)(D
′

t
Xt)θ

2

t
+(X

′

t0
Xt0

)(D
′

t
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

−

(D
′

t
Xt0

)(X
′

t0
Dt)θ

1

t
+(D

′

t
Xt0

)(X
′

t0
Xt)θ

2

t
+(D

′

t
Xt0

)(X
′

t0
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

−(X
′

t0
Dt)(D

′

t
Dt)θ

1

t
−(X

′

t0
Dt)(D

′

t
Xt)θ

2

t
−(X

′

t0
Dt)(D

′

t
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

+
(D

′

t
Dt)(X

′

t0
Dt)θ

1

t
+(D

′

t
Dt)(X

′

t0
Xt)θ

2

t
+(D

′

t
Dt)(X

′

t0
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)




=




θ1
t
+

(X
′

t0
Xt0

)(D
′

t
Xt)−(D

′

t
Xt0

)(X
′

t0
Xt)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

θ2
t
+

(X
′

t0
Xt0

)(D
′

t
Et)−(D

′

t
Xt0

)(X
′

t0
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

−(X
′

t0
Dt)(D

′

t
Dt)+(D

′

t
Dt)(X

′

t0
Dt)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

θ1
t
+

−(X
′

t0
Dt)(D

′

t
Xt)+(D

′

t
Dt)(X

′

t0
Xt)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

A
Dt)

θ2
t
+

−(X
′

t0
Dt)(D

′

t
Et)+(D

′

t
Dt)(X

′

t0
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)


 ,

so

γ̂
1,OLS
t

p
−→ θ1t +

E[Xt0Xt0 ] E[DtXt] − E[DtXt0 ] E[Xt0Xt]

E[DtDt] E[Xt0Xt0 ] − E[DtXt0 ] E[Xt0Dt]
θ2t

+
E[Xt0Xt0 ] E[DtEt] − E[DtXt0 ] E[Xt0Et]

E[DtDt] E[Xt0Xt0 ] − E[DtXt0 ] E[Xt0Dt]
.

8.3 Derivation of 2SLS Estimators

Similarly, we can perform some matrix algebra to see that

α̂
1,2SLS
t = (Z ′

tDt)
−1[Z ′

tY t]

= (Z ′

tDt)
−1[Z ′

t(Dtθ
1
t +Xtθ

2
t +Et)]

= θ1t +
Z ′

tXt

Z ′

tDt

θ2t +
Z ′

tEt

Z ′

tDt

, (22)
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β̂
2SLS

t =

[
(W ′

tJ t)(J
′

tJ t)
−1(J ′

tW t)

]
−1[

(W ′

tJ t)(J
′

tJ t)
−1(J ′

tY t)

]

=

[
(W ′

tJ t)(J
′

tJ t)
−1(J ′

tW t)

]
−1[

(W ′

tJ t)(J
′

tJ t)
−1(J ′

tW tθt)

]
(23)

+

[
(W ′

tJ t)(J
′

tJ t)
−1(J ′

tW t)

]
−1[

(W ′

tJ t)(J
′

tJ t)
−1(J ′

tEt)

]

= θt +

[
(W ′

tJ t)(J
′

tJ t)
−1(J ′

tW t)

]
−1[

(W ′

tJM )(J ′

tJ t)
−1(J ′

tEt)

]
,

and

γ̂2SLS
t =

[
(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
W t0)

]
−1[

(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
Y t)

]

=

[
(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
W t0)

]
−1[

(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
W tθt)

]
(24)

+

[
(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
W t0)

]
−1[

(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
EM )

]
.

Assuming for the sake of exposition that there is perfect compliance, so that Dt = Zt, we can

replace J t = W t. In this case, each of these 2SLS estimators reduces to their OLS counterpart, as:

α̂
1,2SLS
t = θ1t +

Z ′

tXt

Z ′

tDt

θ2t +
Z ′

tEt

Z ′

tDt

= θ1t +
D′

tX t

D′

tDt

θ2t +
D′

tEt

D′

tDt

= α̂
1,OLS
t ,

β̂
2SLS

t = θt +

[
(W ′

tJ t)(J
′

tJ t)
−1(J ′

tW t)

]
−1[

(W ′

tJ t)(J
′

tJ t)
−1(J ′

tEt)

]
,

= θt + (W ′

tW t)
−1(W ′

tEt)

=




θ1t

θ2t


+




(X
′

tXt)(D
′

tEt)−(D
′

MXt)(X
′

tEt)

(D
′

tDt)(X
′

tXt)−(D
′

tXt)(X
′

tDt)

−(X
′

MDt)(D
′

tEt)+(D
′

tDt)(X
′

tEt)

(D
′

MDt)(X
′

tXt)−(D
′

tXt)(X
′

tDt)




= β̂
OLS

t ,

and
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γ̂2SLS
t =

[
(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
W t0)

]
−1[

(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
WMθt)

]

+

[
(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
W t0)

]
−1[

(W ′

t0
J t0)(J

′

t0
J t0)

−1(J ′

t0
Et)

]

=

[
(W ′

t0
W t0)(W

′

t0
W t0)

−1(W ′

t0
W t0)

]
−1[

(W ′

t0
W t0)(W

′

t0
W t0)

−1(W ′

t0
W tθt)

]

+

[
(W ′

t0
W t0)(W

′

t0
W t0)

−1(W ′

t0
W t0)

]
−1[

(W ′

t0
W t0)(W

′

t0
W t0)

−1(W ′

t0
Et)

]

=




θ1
t
+

(X
′

t0
Xt0

)(D
′

t
Xt)−(D

′

t
Xt0

)(X
′

t0
Xt)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

θ2
t
+

(X
′

t0
Xt0

)(D
′

t
Et)−(D

′

M
Xt0

)(X
′

t0
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

−(X
′

t0
DM )(D

′

t
Dt)+(D

′

t
Dt)(X

′

t0
Dt)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

θ1
t
+

−(X
′

t0
Dt)(D

′

t
Xt)+(D

′

t
Dt)(X

′

t0
Xt)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dt)

θ2
t
+

−(X
′

t0
Dt)(D

′

t
Et)+(D

′

M
Dt)(X

′

t0
Et)

(D
′

t
Dt)(X

′

t0
Xt0

)−(D
′

t
Xt0

)(X
′

t0
Dti)




= γ̂OLS
t .
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9 Appendix B: Monte Carlo Evidence on Identification

This Appendix uses Monte Carlo simulations to illustrate identification of causal effects in four

specific DGPs in {Dt}. DGP DI
t is characterized by Xti and Eti not responding to the values drawn

of Dti. We might also think that agents make choices in response to the values of causal variables on

which they have information. For example, the DGP might be characterized by farmers choosing

to irrigate their crops in years with little precipitation (DII
t ); choosing to apply more pesticide to

their crops in years with little precipitation (DIII
t ); or choosing to irrigate their crops and apply

more pesticide to them in years with little precipitation (DIV
t ). It is important to note here that

it is the farmer who is making active choices in DGPs DII
t -DIV

t , and not the crops or the plots of

lands.

Table 3 presents Monte Carlo results showing the performance of the OLS estimators from

Equations 1-7 when estimated on 100,000 simulated data points generated from these DGPs. The

precise parameterizations are as follows: The potential outcome equation is the same across all

simulated DGPs:

Yti
←−= θ0t +Dtiθ

1
t +Xtiθ

2
t + Eti

←−= 2.0 +Dti · 1.0 +Xti · 1.0 + Eti.

As well, in all simulated DGPs treatment is randomized with

Dti
←−= 0.5ZT

ti + 0.5UD
ti where (2*)

ZT
ti ∼ iidU [−1, 1] and

UD
ti ∼ iidU [−1, 1],

stated equivalently as Dti being an iid random variable that follows the triangle distribution with

lower limit −1, upper limit 1, and mode 0.

In DI
t the remaining selection equations 3, 1, 4, and 5 are such that:

EP
ti = 0 ∀ i

with

Xti ∼ U [−1
2 ,

1
2 ], and Eti ≡ EP

ti + EM
ti ∼ U [−1

2 ,
1
2 ]. (DGP I)

Let UX
ti ∼ iidU [0, 1]. In DII

t all features of the model are the same as in DI
t except that observed

covariates are selected in response to treatment:

Xti
←−=




1−Dti if UX

ti ≤ 0.5

Ati otherwise, where Ati ∼ U [−1
2 ,

1
2 ]

(DGP II)

Similarly, DIII
t is the same as DI

t except that now unobserved covariates are selected in response
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to treatment. Unobserved covariates are a combination of permanent and malleable factors:

Eti = 0.25EP
ti + 0.75EM

ti .

The permanent factor is determined as EP
ti ∼ U [−1

2 ,
1
2 ], and letting UM

ti ∼ iidU [0, 1], the malleable

factor is determined in response to treatment as:

EM
ti
←−=




1−Dti if UM

ti ≤ 0.75

Bti otherwise, where Bti ∼ iidU [−1
2 ,

1
2 ]

(DGP III)

Finally, DIV
t is the same as DI

t except that observed covariates are selected in response to treatment

as in DGP DII
t and unobserved covariates are selected in response to treatment as in DIII

t .

9.1 Direct and Total Effects Represent Information about

Distinct Counterfactuals from the Same DGP

Table 3 shows the remarkable robustness of the identification of the average total effect. The

OLS estimators from Equations 8 and 10, α̂1,OLS
t and γ̂

1,OLS
t , identify the average total effect in

all four DGPs.

The causal effect parameters of these DGPs can be seen in Figure 5 and in the first two rows of

Table 3. Both Figure 5 and Table 3 illustrate that direct and total causal effects represent informa-

tion about distinct counterfactuals from the same DGP (Galles and Pearl (1998), Halpern (2000),

Pearl (2013), Pearl (2009b)). Recalling definitions D1 and D2 of direct and total causal effects, Fig-

ure 5 helps to illustrate that direct effects represent information about the counterfactual quantity

E[Yt|do(Dt = d,Xt = x,Et = e)], which holds covariates fixed. In contrast, total effects represent

information about the counterfactual quantity E[Yt|do(Dt = d)], which allows individuals to select

into covariates freely. Alternatively, direct effects represent information about the counterfactual

Yti(D=d,X=x,E=e) and total effects represent information about the counterfactual Yti(D=d).

Focusing on Figure 5, we can see that in DGP DI
t all effect parameters coincide because there

is no selection into covariates. In DGPs DII
t and DIII

t there is heterogeneity in individual-level

total effects, and the average net effect is the population-weighted average of these two discrete

individual-level effects. In DGP DIV
t there is even more heterogeneity in individual-level total

effects, and the average total effect is actually negative. Since the direct effect θ1t is constant across

individuals in all DGPs, the only source of heterogeneity of individual-level effects in DGPs DII
t -

DIV
t is selection into covariates (Equations 26 and 27), not heterogeneous direct effects (Equation

25).
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Table 3: Estimation Results on Data Simulated from Data Generating Processes with Various Selection Rules

A DGP Dt is Fully Specified by:
-The Potential Outcome Equation

-Selection Equations fD
t , fX

t , fP
t , fM

t , and fE
t

DGP DI
t DGP DII

t DGP DIII
t DGP DIV

t

Potential Outcomes: Yti
←−= θ0t + θ1tDti + θ2tXti + Eti

Selection Rule fX
t : Xti ∼ U [− 1

2
, 1
2
] Xti

←−= fX
t (Dti) Xti ∼ U [− 1

2
, 1
2
] Xti

←−= fX
t (Dti)

Selection Rule fE
t : Eti ∼ U [− 1

2
, 1
2
] Eti ∼ U [− 1

2
, 1
2
] Eti

←−= fE
t (Dti) Eti

←−= fE
t (Dti)

Causal Effects
D1: θ1t 1.00 1.00 1.00 1.00

Randomized Dt, f
D
t : D2: E[Yti(Dti=1) 1.00 0.50 0.44 –0.06

−Yti(Dti=0)]
Dti
←−= 0.5ZT

ti + 0.5UD
ti

Estimate

ZT
ti , U

D
ti ∼ iidU [−1, 1] α̂

1,OLS
t (

p
−→ α̂

1,2SLS
t ) 1.00 0.49 0.44 –0.06

β̂
1,OLS
t (

p
−→ β̂

1,2SLS
t ) 1.01 1.00 0.44 0.43

γ̂
1,OLS
t (

p
−→ γ̂

1,2SLS
t ) 1.00 0.49 0.44 –0.06

Exclusion Restrictions
D1: E[ZT

ti Eti] 0.00 0.00 –0.09 0.12
D2: CORR(Yti, Z

T
ti)|Dti, E

P
ti 0.00 0.00 –0.01 0.01

Selection into Covariates
E[Xti|Dti > 0] 0.00 0.33 0.00 0.28
E[Xti|Dti < 0] 0.00 0.67 0.00 0.62

E[Eti|Dti > 0] 0.00 0.00 0.38 0.31
E[Eti|Dti < 0] 0.00 0.00 0.75 0.71

Note: The specified DGPs were used to generate 100,000 observations. The precise functions fX

t and fE

t used in each simulated DGP are specified in Section
4 in the text.
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9.2 Debates about Alternative Approaches to Causal Inference:

One Person’s Bias is Another Person’s Identification

DGPs DII
t -DIV

t illustrate that one person’s bias is another person’s identification, due to the

fact that the exclusion restriction identifying direct effects is distinct from the exclusion restriction

identifying total effects.

In DGP DII
t what represents bias for the researcher trying to identify the total effect represents

identification of the direct effect. This DGP is helpful as a guide for researchers’ decision of whether

to control for observed covariates or not. When it is suspected that Dti is an argument in selection

Equation 3 as in DGP DII
t , Angrist and Pischke (2009) recommend estimating Equation 8 (p 66)

and Duflo et al. (2007) (p 3949) and Rosenbaum (1984) recommend estimating Equation 10. Table

3 shows that both of these estimators will identify the average total effect of treatment, Ei[△
D2
ti ].

Should the researcher control for the observed covariates determined in response to treatment

and estimate Equation 9, β̂1,OLS
t will be a biased estimator of the average total effect Ei[△

D2
ti ]

(Wooldridge (2005), Heckman and Navarro-Lozano (2004)). Chalak and White (2011) refer to this

as “included variable bias.” At the same time, though, β̂1,OLS
t will identify the direct causal effect

θ1t in △D1
ti .

In DGPs DIII
t and DIV

t what represents bias for the researcher trying to identify the direct effect

represents identification of the total effect. In light of DGPs DIII
t and DIV

t , previous criticisms of

the experimentalist approach can be seen as discussions of identification using DGPs with random

variation in treatment that impacts outcomes through covariates. One of Heckman (1997)’s con-

cerns about the total effects identified in Angrist (1990) is that they cannot distinguish between

the direct effect of treatment and the direct effect of unobserved covariates selected in response

to the quasi-randomly assigned treatment. The concerns raised in Rosenzweig and Wolpin (2000)

and Keane (2010) about total effects identified by the quasi-random assignment of treatment gen-

erated by natural experiments are likewise related to selection into covariates, creating a difference

between the total effect and direct effect identified by IV estimators. Finally, the distinction be-

tween exogeneity and orthogonality made in Deaton (2010) can be seen as a distinction between

orthogonality conditions made at two points in time, the time of assignment (t0) and the time of

measurement (t). Deaton’s concern is that even if orthogonality conditions hold for a given DGP

at time t0, the later ones at t necessary for identification can be violated due to selection into co-

variates.19 Further discussion of the cases when conditioning and setting/fixing variables coincide

can be found in Heckman and Pinto (2014).

19A similar point about DGPs in which the direct effect is not identified is made in White and Chalak (2013).
Further discussions on the limitations of effects identified by randomized treatments are provided in Leamer (2010)
and Heckman and Smith (1995).

41



10 Appendix C: The Marginal Treatment Effect and Sources of

Effect Heterogeneity

Here we also present a brief discussion of the Marginal Treatment Effect (MTE) in recogni-

tion of the fact that all varieties of the total effects in the program evaluation literature can be

written as weighted averages of MTEs (Heckman and Vytlacil (2005)). Suppose that we allow for

heterogeneous responses to treatment, replacing Equation 1* with

Yti
←−= θ0t +Dtiθ

1
ti +Xti(Dti)θ

2
t + Eti(Dti). (1⋆)

Define the Marginal Treatment Effect (MTE) as:

△MTE
t (d, d′, UD

ti ) ≡ Ei[ Yti(d′) − Yti(d) | U
D
ti ].

Note that this definition of MTE contrasts with that in Heckman and Vytlacil (2005) and the

generalizations in Heckman et al. (2006) in that it does not condition on observed covariates Xti.

Under the specification of the DGP in Equation 1⋆ one possible reason for heterogeneity in

△MTE
t over the support of UD

ti is a correlation between the unmeasured factors driving selection

intoDti (U
D
ti in Equation 2) and the direct effect ofDti (θ

1
ti). In this case the expected causal effect of

Dti (under all definitions) might vary due to idiosyncratic differences in the direct effect of treatment

over different parts of the support of UD
ti . Different interventions might induce individuals with

different UD
ti to select into Dti, generating heterogeneous MTEs through heterogeneous response to

treatment:

Ei

[
θ1ti

(
d′ − d

) ∣∣ UD
ti

]
. (25)

Another possible reason for heterogeneity in △MTE
t over the support of UD

ti is that either

observed or unobserved covariates, Xti(Dti) or Eti(Dti) respectively, are determined in response to

treatment, so that:

Ei

[
θ2ti

(
Xti(d′) −Xti(d)

) ∣∣ UD
ti

]
6= 0 , or (26)

Ei

[(
Eti(d′) − Eti(d)

) ∣∣ UD
ti

]
6= 0 . (27)
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11 Appendix D: Extension to DGPs with Selection into Treat-

ment in Response to an Unobserved Covariate

Table 4 presents Monte Carlo results showing the performance of the OLS estimators from

Equations 8-10 as well as their 2SLS analogues when DGPs DI
t -D

IV
t also exhibit selection into

treatment. These DGPs are characterized by the following structural equations:

EP
ti
←−= fP (UP

ti ; ΘP ) (28)

Dti
←−= fD(ZT

ti , E
P
ti , U

D
ti ; ΘD) (29)

Xti
←−= fX(Dti, E

P
ti , U

X
ti ; ΘX) (30)

EM
ti
←−= fM(Dti,Xti, U

M
ti ; ΘM ) (31)

Eti
←−= fE(EP

ti , E
M
ti ; ΘE) (32)

Yti
←−= θ0t +Dtiθ

1
t +Xtiθ

2
t + Eti. (33)

In terms of specification, the potential outcome equation is still the same across all DGPs:

Yti
←−= 2.0 +Dti · 1.0 +Xti · 1.0 + Eti.

The difference is that now, in all simulated DGPs treatment is selected according to

Dti
←−= 0.5ZT

ti + 0.25UD
ti + 0.25EP

ti

where both ZT
ti , U

D
ti ∼ iidU [−1, 1]. EP

ti represents a permanent component of the unobserved

covariate and EM
ti represents a malleable component of the unobserved covariate as follows:

Eti
←−= 0.25EP

ti + 0.75EM
ti .

In DGP DI
t both EP

ti , E
M
ti ∼ iidU [−1

2 ,
1
2 ] and the remaining selection equation is specified to

be:

Xti ∼ U [−1
2 ,

1
2 ].

In DGP DII
t all features of the model are the same as in DGP DII

t except that observed

covariates are selected in response to treatment:

Xti
←−=




1−Dti if UX

ti ≤ 0.5

Ati otherwise, where Ati ∼ U [−1
2 ,

1
2 ]

where UX
ti ∼ iidU [0, 1].

Similarly, DGP DIII
t is the same as DGP DI

t except that now unobserved covariates are selected
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in response to treatment as

EM
ti
←−=




1−Dti if UE

ti ≤ 0.75;

Bti ∼ U [−1
2 ,

1
2 ] if UE

ti > 0.75,

with UE
ti ∼ U [0, 1].

Finally, DGP DIV
t is the same as DGP DI

t except that observed covariates are selected in re-

sponse to treatment as in DGP DII
t and unobserved covariates are selected in response to treatment

as in DGP DIII
t .
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Total Effect Intervention ZT

t

44



Table 4: Estimation Results on Data Simulated from Data Generating Processes with Selection into Treatment

A DGP Dt is Fully Specified by:
-The Potential Outcome Equation

-Selection Equations fD, fX , and fE

DGP DI
t DGP DII

t DGP DIII
t DGP DIV

t

Potential Outcomes: Yti
←−= θ0t + θ1tDti + θ2tXti + Eti

Selection Rule fX
t : Xti ∼ U [− 1

2
, 1
2
] Xti

←−= fX

t (Dti) Xti ∼ U [− 1
2
, 1
2
] Xti

←−= fX

t (Dti)

Selection Rule fE
t : EM

ti ∼ U [− 1
2
, 1
2
] EM

ti ∼ U [− 1
2
, 1
2
] EM

ti
←−= fE

t (Dti) EM

ti
←−= fE

t (Dti)

Causal Effects
Selection into E: D1: θ1t 1.00 1.00 1.00 1.00

D2: E[Yti(Dti=1) 1.00 0.50 0.44 –0.06
EP

ti is Permanent, EM
ti is Malleable −Yti(Dti=0)]

Eti
←−= 0.25EP

ti + 0.75EM
ti Estimate

α̂
1,OLS
t 1.04 0.54 0.49 –0.02

EP
ti ∼ iidU [− 1

2 ,
1
2 ] β̂

1,OLS
t 1.05 1.05 0.49 0.49

γ̂
1,OLS
t 1.04 0.54 0.49 –0.02

EM
ti
←−= 1−Dti if U

E
ti ≤ 0.75

α̂
1,2SLS
t 0.99 0.49 0.44 –0.06

EM
ti ∼ iidU [− 1

2 ,
1
2 ] if U

E
ti > 0.75 β̂

1,2SLS
t 1.00 1.00 0.45 0.44

γ̂
1,2SLS
t 0.99 0.49 0.44 –0.06

UE
ti ∼ U [0, 1]

Exclusion Restrictions
D1: E[ZT

ti Eti] 0.00 0.00 –0.09 –0.09
D2: CORR(Yti, Z

T
ti)|Dti, E

P
ti 0.00 0.00 0.00 0.00

Selection into D:
Selection into Covariates

Dti
←−= 0.5ZT

ti + 0.25UD
ti + 0.25EP

ti E[Xti|Dti > 0] 0.00 0.36 0.00 0.36
E[Xti|Dti < 0] 0.00 0.64 0.00 0.64

ZT
ti , U

D
ti ∼ iidU [−1, 1]

E[Eti|Dti > 0] 0.01 0.01 0.42 0.42
E[Eti|Dti < 0] –0.01 –0.01 0.71 0.71

Note: The specified DGPs were used to generate 100,000 observations for the previous and current time periods. The precise functions fX

t and fE

t used in
each simulated DGP are specified in the text.
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